Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
523.doc
Скачиваний:
76
Добавлен:
30.04.2022
Размер:
17.27 Mб
Скачать

6.1.2. Сварка давлением с косвенным импульсным нагревом (скин)

Этот метод является разновидностью способа сварки давлением с подогревом. Метод СКИН осуществляется V-образным инструментом (пуансоном), импульсно нагреваемым проходящим по нему током (рис. 6.7). Способ применяется при монтаже гибридных ИС, которые не допускают общего разогрева. Вследствие кратковременности процесса нагрева металлический проводник в месте контакта может нагреваться до более высоких температур, чем при термокомпрессии. Этим методом приваривают золотые, алюминиевые и медные проводники диаметром 0,02-0,1 мм с разнообразными пленками, напыленными на диэлектрические или полупроводниковые подложки.

Рис. 6.7. Схема сварки давлением с косвенным импульсным нагревом V-образным инструментом: 1 – рабочий столик; 2 – подложка; 3 – проводник; 4 – инструмент; 5 – сварочная головка для создания давлением; 6 – источник питания; 7 – реле времени

6.1.3. Ультразвуковая микросварка

При этом методе соединение металлов в твердом состоянии осуществляется за счет возбуждения в свариваемых деталях упругих колебаний ультразвуковой частоты при одновременном создании определенного давления. В микроэлектронике УЗС используется при изготовлении транзисторов, ИС, гибридных ИС и др. изделий микроэлектроники.

Основными параметрами процесса при этом методе микросварки являются амплитуда колебаний рабочего торца инструмента, которая зависит от электрической мощности преобразователя и конструктивного исполнения колебательной системы; усилие сжатия свариваемых элементов; длительность включения ультразвуковых колебаний (время сварки).

Сущность метода ультразвуковой сварки заключается в возникновении трения на поверхности раздела между соединяемыми телами, в результате чего происходит разрушение оксидных и адсорбированных пленок, образование физического контакта и развитие очагов схватывания между соединяемыми деталями.

Для ультразвуковой микросварки применяют две колебательные системы (рис. 6.8). Температура нагрева деталей непосредственно в зоне контакта обычно не превышает 0,3-0,5 от температуры плавления соединяемых материалов.

Рис. 6.8. Ультразвуковые колебательные системы для микросварки: 1 – преобразователь; 2 – волновод-концентратор; 3 – акустическая развязка; 4 – сварочный инструмент. А – амплитуда колебаний; Р – усилие сжатия; М – момент силы

6.1.3.1. Расчет концентраторов для установок ультразвуковой микросварки

При монтаже проволочных выводов в СПП для силовой электроники в основном применяется УЗС. Основными параметрами процесса при этом методе микросварки являются: амплитуда колебаний рабочего торца инструмента, которая зависит от электрической мощности преобразователя и конструктивного исполнения колебательной системы; усилие сжатия свариваемых элементов; длительность включения ультразвуковых колебаний (время сварки).

Сущность метода УЗС заключается в возникновении трения на поверхности раздела соединяемыми элементами, в результате чего происходит разрушение оксидных и адсорбированных пленок, образование физического контакта и развитие очагов схватывания между соединяемыми деталями.

Ультразвуковой концентратор является одним из основных элементов колебательных систем микросварочных установок. Концентраторы выполняются в виде стержневых систем с плавно меняющимся сечением, т. к. площадь излучения преобразователя всегда значительно больше площади сварного соединения. Большим, входным, сечением концентратор присоединяется к преобразователю, а к меньшему, выходному, сечению крепится ультразвуковой инструмент. Назначение концентратора – это передача ультразвуковых колебаний от преобразователя в ультразвуковой инструмент с наименьшими потерями и наибольшей эффективностью.

В ультразвуковой технике известно большое количество типов концентраторов. Наибольшее распространение получили следующие: ступенчатый, экспоненциальный, конический, катеноидальный и концентратор типа «цилиндр-катеноида». В колебательных системах установок часто используются конические концентраторы. Это объясняется тем, что они просты в расчете и изготовлении. Однако из пяти вышеперечисленных концентраторов конический обладает наибольшими потерями из-за внутреннего трения, рассеивает наибольшую мощность, а следовательно, больше нагревается. Наилучшей устойчивостью обладают концентраторы с наименьшим значением отношения входного и выходного диаметров для одинакового коэффициента усиления Ky. Желательно также, чтобы "полуволновая" длина его была наименьшей. Для целей микросварки обычно применяют концентраторы с 2<Ky<10. В этом диапазоне коэффициентов усиления и с учетом вышеизложенных соображений рекомендуются концентраторы типа «цилиндр-катеноида».

Материал концентратора должен обладать высокой усталостной прочностью, малыми потерями, хорошо паяться твердыми припоями, легко обрабатываться и быть сравнительно недорогим.

Расчет ультразвукового концентратора сводится к определению его длины, входных и выходных сечений, формы профиля его боковых поверхностей. При расчете вводят следующие допущения: а) вдоль концентратора распространяется плоская волна; б) колебания носят гармонический характер; в) концентратор колеблется только вдоль осевой линии; г) механические потери в концентраторе невелики и линейно зависят от амплитуды колебаний (деформации).

Теоретический коэффициент усиления Ку амплитуды колебаний экспоненциального концентратора определяется из выражения

(1)

где D0 и D1 – соответственно диаметры входного и выходного сечений концентратора, мм; N – отношение диаметра входного сечения концентратора к выходному.

Длина концентратора рассчитывается по формуле

(2)

где с – скорость распространения ультразвуковых колебаний в материале концентратора, мм/с; f – рабочая частота, Гц.

Положение узловой плоскости х0 (места крепления волновода) выражается соотношением

(3)

Форма образующей профиля катеноидальной части концентратора рассчитывается по уравнению

(4)

где – коэффициент формы образующей; х – текущая координата по длине концентратора, мм.

В данной работе разработана компьютерная программа для расчета параметров пяти типов ультразвуковых концентраторов: экспоненциального, ступенчатого, конического, катеноидального и концентратора «цилиндр-катеноида», реализованная на языке Паскаль (компилятор Turbo-Pascal-8.0). Исходными данными для расчетов являются: диаметры входного и выходного сечений (D0 и D1), рабочая частота (f) и скорость распространения ультразвуковых колебаний в материале концентратора (с). Программа позволяет рассчитать длину, положение узловой плоскости, коэффициент усиления, а также для экспоненциального, катеноидального и концентратора «цилиндр-катеноида» форму образующей с заданным шагом. Структурная схема алгоритма для расчета экспоненциального концентратора представлена на рис. 6.9.

Пример расчета. Рассчитать параметры полуволнового экспоненциального концентратора, если заданы рабочая частота f = 66 кГц; диаметр входного сечения D0 = 18 мм, выходного D1=6 мм; материал концентратора – сталь 30ХГСА (скорость ультразвука в материале с = 5,2·106 мм/с).

По формуле (1) определяем коэффициент усиления концентратора .

Рис. 6.9. Структурная схема алгоритма расчета экспоненциального концентратора

В соответствии с выражениями (2) и (3) длина концентратора , положение узловой плоскости мм.

Уравнение (4) для расчета формы профиля концентратора приобретает после подстановок следующий вид:

Расчеты с помощью компьютерной программы профиля образующей экспоненциального концентратора с шагом по параметру х, равным 5 мм, приведены в табл. 6.1. По данным табл. 6.1 конструируется профиль концентратора.

Табл. 6.1. Данные расчета профиля концентратора

х, мм

0

5

10

15

20

25

30

35

40

42

Dх, мм

18

15,7

13,8

12

10,6

9,3

8,2

7,2

6,3

6

В табл. 6.2 приведены результаты расчетов параметров различных типов ультразвуковых концентраторов из стали 30ХГСА (при D0 = 18 мм; D1 = 6 мм; f = 66 кГц).

Табл. 6.2. Параметры УЗ концентраторов

Тип концентратора

l1, мм

l2, мм

l, мм

Ку

Экспоненциальный

41,733

3,000

Ступенчатый

39,394

9,000

Конический

65,783

5,341

Цилиндр-катеноида*

9,848

33,425

43,274

5,102

Катеноидальный

69,398

5,897

*l1 и l2 – соответственно длина цилиндрической и катеноидальной части концентратора.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]