Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
вопросы к экзамену.docx
Скачиваний:
39
Добавлен:
01.09.2021
Размер:
4.91 Mб
Скачать

Интерфейс

короче, инфа есть тут (я просто хз, нужно ли про интерфейсы писать) (САНЯ ПИДАРАС)

https://professorweb.ru/my/csharp/charp_theory/level9/9_1.php

Сравнение абстр. Класса и интерфейса

3 Раздел

1. Определения графов. Элементы графов. Направленные орграфы и сети. Представление графов в компьютере: требования к представлению графов, матрица смежности, матрица инциденций.

В математике, Граф — это абстрактное представление множества объектов и связей между ними. Графом называют пару (V, E) где V это множество вершин, а E множество пар, каждая из которых представляет собой связь (эти пары называют рёбрами).

Граф может быть ориентированным или неориентированным. В ориентированном графе, связи являются направленными (то есть пары в E являются упорядоченными, например пары (a, b) и (b, a) это две разные связи). В свою очередь в неориентированном графе, связи ненаправленные, и поэтому если существует связь (a, b) то значит что существует связь (b, a).

Если в графе ориентировать все ребра, то получится орграф, который называется направленным.

Если в орграфе полустепень захода некоторой вершины равна нулю (то есть d+(v) = 0), то такая вершина, в которую не приходят дуги, называется источником, если же нулю равна полустепень исхода (то есть d-(v) = 0), то вершина, из которой дуги не исходят, называется стоком.

Направленный орграф с одним источником и одним стоком называется сетью.

Способы представления графа

Граф может быть представлен (сохранен) несколькими способами:

  • матрица смежности;

  • матрица инцидентности;

  • список смежности (инцидентности);

  • список ребер.

Использование двух первых методов предполагает хранение графа в виде двумерного массива (матрицы). Размер массива зависит от количества вершин и/или ребер в конкретном графе.

Матрица смежности графа — это квадратная матрица, в которой каждый элемент принимает одно из двух значений: 0 или 1.Число строк матрицы смежности равно числу столбцов и соответствует количеству вершин графа.

  • 0 – соответствует отсутствию ребра,

  • 1 – соответствует наличию ребра.

Когда из одной вершины в другую проход свободен (имеется ребро), в ячейку заносится 1, иначе – 0. Все элементы на главной диагонали равны 0 если граф не имеет петель.

Матрица инцидентности (инциденции) графа — это матрица, количество строк в которой соответствует числу вершин, а количество столбцов – числу рёбер. В ней указываются связи между инцидентными элементами графа (ребро(дуга) и вершина).В неориентированном графе если вершина инцидентна ребру то соответствующий элемент равен 1, в противном случае элемент равен 0.

В ориентированном графе если ребро выходит из вершины, то соответствующий элемент равен 1, если ребро входит в вершину, то соответствующий элемент равен -1, если ребро отсутствует, то элемент равен 0.

Матрица инцидентности для своего представления требует нумерации рёбер, что не всегда удобно.

2. Представление графов в компьютере: списки смежности, массив дуг. Обход графов.

Список смежности (инцидентности)

Если количество ребер графа по сравнению с количеством вершин невелико, то значения большинства элементов матрицы смежности будут равны 0. При этом использование данного метода нецелесообразно. Для подобных графов имеются более оптимальные способы их представления.

По отношению к памяти списки смежности менее требовательны, чем матрицы смежности. Такой список можно представить в виде таблицы, столбцов в которой – 2, а строк — не больше, чем вершин в графе.

В каждой строке в первом столбце указана вершина выхода, а во втором столбце – список вершин, в которые входят ребра из текущей вершины.

Список рёбер

В списке рёбер в каждой строке записываются две смежные вершины и вес соединяющего их ребра (для взвешенного графа).

Количество строк в списке ребер всегда должно быть равно величине, получающейся в результате сложения ориентированных рёбер с удвоенным количеством неориентированных рёбер.

Какой способ представления графа лучше? Ответ зависит от отношения между числом вершин и числом рёбер. Число ребер может быть довольно малым (такого же порядка, как и количество вершин) или довольно большим (если граф является полным). Графы с большим числом рёбер называют плотными, с малым — разреженными. Плотные графы удобнее хранить в виде матрицы смежности, разреженные — в виде списка смежности.

=================================================================

реализации обходов на спп тут:

https://prog-cpp.ru/data-graph/

Обход графов

Обход графа – некоторое перечисление его вершин (и/или ребер). Наибольший интерес представляют обходы, использующие локальную информацию (списки смежности). Среди всех обходов наиболее известны поиск в ширину и в глубину.

3. Кратчайшие пути. Длина дуги. Алгоритм Дейкстры.

Находит расстояние от одной вершины (дадим ей номер 0) до всех остальных за количество операций порядка n^2. Все веса неотрицательны.

На каждой итерации какие-то вершины будут помечены, а какие-то нет. Заведём два массива: mark[0… n — 1] — True, если вершина помечена, False иначе, d[0… n — 1] — для каждой вершины будет храниться длина кратчайшего пути, проходящего только по помеченным вершинам в качестве «пересадочных». Также поддерживается инвариант того, что для помеченных вершин длина, указанная в d, и есть ответ. Сначала помечена только вершина 0, а g[i] равно x, если 0 и i соединяет ребро весом x, равно 2000000000, если их не соединяет ребро, и равно 0, если i = 0.

На каждой итерации мы находим вершину, с наименьшим значением в d среди непомеченных, пусть это вершина v. Тогда значение d[v] является ответом для v. Докажем. Пусть, кратчайший путь до v из 0 проходит не только по помеченным вершинам в качестве «пересадочных», и при этом он короче d[v]. Возьмём первую встретившуюся непомеченную вершину на этом пути, назовём её u. Длина пройденной части пути (от 0 до u) — d[u]. len >= d[u], где len — длина кратчайшего пути из 0 до v (т. к. отрицательных рёбер нет), но по нашему предположению len меньше d[v]. Значит, d[v] > len >= d[u]. Но тогда v не подходит под своё описание — у неё не наименьшее значение d[v] среди непомеченных. Противоречие.

Теперь смело помечаем вершину v и пересчитываем d. Так делаем, пока все вершины не станут помеченными, и d не станет ответом на задачу.

n итераций по n итераций (на поиск вершины v), итого порядка n^2 операций.

Псевдокод:

Соседние файлы в предмете Технология программирования