Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Биоинженерия / ТИ_ССС / TE_ruvinov2012.pdf
Скачиваний:
96
Добавлен:
08.05.2021
Размер:
8.24 Mб
Скачать

7.4. SUMMARY AND CONCLUSIONS 105

stimulus in perfusion bioreactor, cell elongation and striation in the cell constructs were clearly detected, as well as enhanced expression level of Cx-43 [34].

7.4SUMMARY AND CONCLUSIONS

This chapter described the development of bio-mimetic cell culture systems, designed to recapitulate some aspects of the actual in vivo cardiac environment. Advances in the design of perfusion bioreactors solved a critical problem in cardiac tissue engineering, leading to the enhancement of mass transfer within the construct and attaining thicker tissues. In conjunction with the applied mechanical and electrical stimulations, synchronously contracted cardiac patches were produced.

The field of in vitro cardiac tissue engineering has greatly advanced in recent years, as the cardiac patches developed so far mimic to a large extent the native cardiac tissue features and function. Clearly, the success of this strategy for scar replacement and /or support depends on the extent and how fast the integration into the host tissue would be. In the next chapter, we describe methods intended to increase vascularization of the cardiac patch, a process which should assist in its integration.

BIBLIOGRAPHY

[1]Akhyari P, Fedak PW, Weisel RD, Lee TY, Verma S, Mickle DA, et al. Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation. 2002;106:I137–42. DOI: 10.1161/01.cir.0000032893.55215.fc 87, 95

[2]Zimmermann WH, Schneiderbanger K, Schubert P, Didie M, Munzel F, Heubach JF, et al. Tissue engineering of a differentiated cardiac muscle construct. Circ Res. 2002;90:223–30. DOI: 10.1161/hh0202.103644 87, 95

[3]Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R, et al. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proceedings of the National Academy of Sciences of the United States of America. 2004;101:18129–34. DOI: 10.1073/pnas.0407817101 87, 103

[4]Radisic M, Yang L, Boublik J, Cohen RJ, Langer R, Freed LE, et al. Medium perfusion enables engineering of compact and contractile cardiac tissue. American journal of physiology. 2004;286:H507–16. DOI: 10.1152/ajpheart.00171.2003 87, 89

[5]Lanza RP, Langer RS, Vacanti J. Principles of tissue engineering. San Diego, CA: Academic Press; 2000. 88

[6]Radisic M, Park H, Gerecht S, Cannizzaro C, Langer R, Vunjak-Novakovic G. Biomimetic approach to cardiac tissue engineering. Philos Trans R Soc Lond B Biol Sci. 2007;362:1357–68. DOI: 10.1089/ten.2006.12.2077 89

106BIBLIOGRAPHY

[7]Radisic M, Marsano A, Maidhof R, Wang Y, Vunjak-Novakovic G. Cardiac tissue engineering using perfusion bioreactor systems. Nat Protoc. 2008;3:719–38. DOI: 10.1038/nprot.2008.40

[8]Shachar M, Cohen S. Cardiac tissue engineering, Ex-vivo: Design principles in biomaterials and bioreactors. Heart Fail Rev. 2003;8:271–6. DOI: 10.1023/A:1024729919743 89

[9]Freed LE, Guilak F, Guo XE, Gray ML, Tranquillo R, Holmes JW, et al. Advanced tools for tissue engineering: scaffolds, bioreactors, and signaling. Tissue Eng. 2006;12:3285–305. DOI: 10.1089/ten.2006.12.3285 89

[10]Carrier RL, Rupnick M, Langer R, Schoen FJ, Freed LE, Vunjak-Novakovic G. Perfusion improves tissue architecture of engineered cardiac muscle. Tissue Eng. 2002;8:175–88. DOI: 10.1089/107632702753724950 89

[11]Brown MA, Iyer RK, Radisic M. Pulsatile perfusion bioreactor for cardiac tissue engineering. Biotechnol Prog. 2008;24:907–20. DOI: 10.1002/btpr.11 89

[12]Dvir T, Benishti N, Shachar M, Cohen S. A novel perfusion bioreactor providing a homogenous milieu for tissue regeneration.Tissue Eng. 2006;12:2843–52. DOI: 10.1089/ten.2006.12.2843 89, 92

[13]Dvir T, Levy O, Shachar M, Granot Y, Cohen S. Activation of the ERK1/2 cascade via pulsatile interstitial fluid flow promotes cardiac tissue assembly. Tissue Eng. 2007;13:2185–93. DOI: 10.1089/ten.2006.0364 92, 95, 96, 97

[14]Ingber DE. Cellular mechanotransduction: putting all the pieces together again. Faseb J. 2006;20:811–27. DOI: 10.1096/fj.05-5424rev 93

[15]Sebastine IM, Williams DJ. The role of mechanical stimulation in engineering of extracellular matrix (ECM). Conf Proc IEEE Eng Med Biol Soc. 2006;1:3648–51.

DOI: 10.1109/IEMBS.2006.260344 93

[16]Riehl BD, Park JH, Kwon IK, Lim JY. Mechanical Stretching for Tissue Engineering: TwoDimensional and Three-Dimensional Constructs. Tissue Eng Part B Rev. 2012.

DOI: 10.1089/ten.teb.2011.0465 93

[17]Curtis MW, Russell B. Micromechanical regulation in cardiac myocytes and fibroblasts: implications for tissue remodeling. Pflugers Archiv : European journal of physiology. 2011;462:105–

17.DOI: 10.1007/s00424-011-0931-8 93, 95

[18]Parker KK, Ingber DE. Extracellular matrix, mechanotransduction and structural hierarchies in heart tissue engineering. Philos Trans R Soc Lond B Biol Sci. 2007;362:1267–79.

DOI: 10.1098/rstb.2007.2114 93

BIBLIOGRAPHY 107

[19]Lammerding J, Kamm RD, Lee RT. Mechanotransduction in cardiac myocytes. Annals of the New York Academy of Sciences. 2004;1015:53–70. DOI: 10.1196/annals.1302.005 93, 95

[20]Carver SE, Heath CA. Semi-continuous perfusion system for delivering intermittent physiological pressure to regenerating cartilage. Tissue Eng. 1999;5:1–11.

DOI: 10.1089/ten.1999.5.1 95

[21]Guldberg RE. Consideration of mechanical factors. Annals of the New York Academy of Sciences. 2002;961:312–4. 95

[22]Roberts SR, Knight MM, Lee DA, Bader DL. Mechanical compression influences intracellular Ca2+ signaling in chondrocytes seeded in agarose constructs. J Appl Physiol. 2001;90:1385–

91.95

[23]Mol A, Driessen NJ, Rutten MC, Hoerstrup SP, Bouten CV, Baaijens FP. Tissue engineering of human heart valve leaflets: a novel bioreactor for a strain-based conditioning approach. Ann Biomed Eng. 2005;33:1778–88. DOI: 10.1007/s10439-005-8025-4 95

[24]Rotenberg MY, Ruvinov E, Armoza A, Cohen S. A Multi-Shear Perfusion Bioreactor for Investigating Shear Stress Effects in Endothelial Cell Constructs. Lab on a Chip. 2012. DOI: 10.1039/C2LC40144D 96, 98, 99, 100

[25]Sapir Y, Cohen S, Friedman G, Polyak B. The promotion of in vitro vessel-like organization of endothelial cells in magnetically responsive alginate scaffolds. Biomaterials. 2012.

DOI: 10.1016/j.biomaterials.2012.02.037 101, 102

[26]Lee E. Magnetostriction and Magnetomechanical Effects. Rep Prog Phys. 1955;18:184. DOI: 10.1088/0034-4885/18/1/305 101

[27]Yamada M, Tanemura K, Okada S, Iwanami A, Nakamura M, Mizuno H, et al. Electrical stimulation modulates fate determination of differentiating embryonic stem cells. Stem Cells. 2007;25:562–70. DOI: 10.1634/stemcells.2006-0011 103

[28]Kawahara Y, Yamaoka K, Iwata M, Fujimura M, Kajiume T, Magaki T, et al. Novel electrical stimulation sets the cultured myoblast contractile function to ’on’. Pathobiology. 2006;73:288–

94.DOI: 10.1159/000099123 103

[29]McDonough PM, Glembotski CC. Induction of atrial natriuretic factor and myosin light chain-2 gene expression in cultured ventricular myocytes by electrical stimulation of contraction. J Biol Chem. 1992;267:11665–8. 103

[30]Inoue N, Ohkusa T, Nao T, Lee JK, Matsumoto T, Hisamatsu Y, et al. Rapid electrical stimulation of contraction modulates gap junction protein in neonatal rat cultured cardiomyocytes: involvement of mitogen-activated protein kinases and effects of angiotensin II-receptor antagonist. J Am Coll Cardiol. 2004;44:914–22. DOI: 10.1016/j.jacc.2004.05.054 103

108BIBLIOGRAPHY

[31]Yue A, Yang G, Wu J, Lai Y, Huang H, Chen H. [The influence of the pulsed electrical stimulation on the morphology and the functions of the endothelial cells]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2008;25:694–8. 103

[32]Zhao M, Bai H, Wang E, Forrester JV, McCaig CD. Electrical stimulation directly induces pre-angiogenic responses in vascular endothelial cells by signaling through VEGF receptors. J Cell Sci. 2004;117:397–405. DOI: 10.1242/jcs.00868 103

[33]Chiu LL, Iyer RK, King JP, Radisic M. Biphasic electrical field stimulation aids in tissue engineering of multicell-type cardiac organoids. Tissue Eng Part A.17:1465–77.

DOI: 10.1089/ten.tea.2007.0244 103

[34]Barash Y, Dvir T, Tandeitnik P, Ruvinov E, Guterman H, Cohen S. Electric field stimulation integrated into perfusion bioreactor for cardiac tissue engineering.Tissue Eng Part C Methods. 2010;16:1417–26. 103, 104, 105

Соседние файлы в папке ТИ_ССС