Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
OKIP_shpory.docx
Скачиваний:
8
Добавлен:
23.11.2019
Размер:
1.74 Mб
Скачать

1.4.3 Теорема о моменте равнодействующей(теорема Вариньона)

 

В общем случае произвольная плоская система сил приводится к главному вектору F'гл и к главному моменту Mгл относительно выбранного центра приведения, причем главный момент равен алгебраической сумме моментов заданных сил относительно точки О: 

Было показано, что можно выбрать центр приведения, относительно которого главный момент системы будет равен нулю, и система сил приведется к одной равнодействующей  , равной по модулю главному вектору  . Определим момент равнодействующей   относительно точки О. Учитывая, что плечо ОС силы F равно  , получаем  .

Две величины, порознь равные третьей, равны между собой, поэтому из предыдущих уравнений находим .

Полученное уравнение выражает теорему Вариньона: момент равнодействующей плоской системы сил относительно произвольно взятой точки равен алгебраической сумме моментов составляющих сил относительно той же точки.

Из теоремы Вариньона следует, что главный момент плоской системы сил относительно любой точки, лежащей на линии действия ее равнодействующей, равен нулю.

 

 

1.4.4 Уравнения равновесия плоской системы сил

 

Плоская система сил может быть приведена к главному вектору и главному моменту. Поэтому условия равновесия сил на плоскости, как показано выше, имеют вид: 

Итак, для равновесия системы сил, произвольно расположенных в плоскости, необходимо и достаточно, чтобы главный вектор и главный момент этих сил относительно любого центра каждый в отдельности равнялся нилю.

Главный вектор F'гл представляет собой геометрическую сумму всех сил, составляющих систему и перенесенных в центр приведения. Модуль главного вектора можно определить через проекции на координатные оси всех сил системы. Применив для сумм проекций всех сил на оси х и у обозначения   получим для значения главного вектора выражение

Главный вектор равен нулю, если оба слагаемых под корнем равны нулю, т. е.

Кроме того, для равновесия необходимо, чтобы главный момент также был равен нулю, т. е,

В дальнейшем для упрощения записи уравнений равновесия при решении задач будем опускать индексы у сумм.

Уравнения равновесия произвольной плоской системы сил могут быть представлены в трех формах. Первая (основная форма этих уравнений) выведена выше:

Три уравнения равновесия для плоской системы сил соответствует трем возможным степеням подвижности тела в плоскости — двум перемещениям вдоль осей х и у и вращению вокруг произвольной точки плоскости.

При решении многих задач рациональнее пользоваться другими формами уравнений равновесия.

Так как при равновесии твердого тела сумма моментов всех приложенных к нему сил относительно любой точки равна нулю, то можно, выбрав три произвольные точки А, В, С и приравняв нулю сумму моментов относительно каждой из них, получить три следующих уравнения равновесия:

Это вторая форма уравнений равновесия. Точки А, В, С не должны лежать на одной прямой.

Третья форма уравнений равновесия представляет собой равенство нулю сумм моментов относительно двух произвольных точек А и В и равенство нулю суммы проекций на некоторую ось х:

При пользовании этой формой уравнений равновесия необходимо, чтобы ось х не была перпендикулярна линии, соединяющей точки А и В.

Для системы параллельных сил, выбрав одну из осей проекций, параллельной этим силам, а другую — перпендикулярной к ним, получим два уравнения равновесия (рис.35).

Первая форма уравнений равновесия для плоской системы параллельных сил примет вид:

При этом первое уравнение равновесия можно трактовать как равенство нулю алгебраической суммы всех заданных параллельных сил, так как на параллельную ось они проектируются в натуральную величину.

Вторая и третья формы уравнений равновесия для плоской системы параллельных сил примут одинаковый вид:

Итак, для произвольной плоской системы сил имеем три уравнения равновесия, а для плоской системы параллельных сил — только два. Соответственно при решении задач на равновесие произвольной плоской системы сил можно найти три неизвестных, а при рассмотрении равновесия плоской системы параллельных сил — не более двух. Если количество неизвестных превышает число уравнений статики, задача становится статически неопределимой.

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]