Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3 курс / Фармакология / Фармакология_флавоноидов_Зверев_Я_Ф_,_Рыкунова_А_Я.pdf
Скачиваний:
1
Добавлен:
24.03.2024
Размер:
2.53 Mб
Скачать

ЛИТЕРАТУРА

1.Xu J., Zhao S., Teng T. et al. Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses. 2020; 12(2): 244. doi: 10.3390/v12020244.

2.Zhang L., Lin D., Sun X. et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors. Science. 2020; 368(6489): 409-412. doi: 10.1126/science.abb3405.

3.Dai W., Zhang B., Jiang X.M. et al. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science. 2020; 368(6497): 1331-1335. doi: 10.1126/science.abb4489.

4.Jin Z., Du X., Xu Y. et al. Structure of M(pro) from SARSCoV- -2 and discovery of its inhibitors. Nature. 2020; 582(7811): 289-293. doi: 10.1038/s41586-020-2223-y.

5.Ferreira J.C., Villanueva A.J., Robeh W.M. Catalytic dyad residues His41 and Cys145 impact the catalytic activity and overall conformational fold of the main SARS-CoV-2 protease 3-chymotrypsin-like protease. Front. Chem. 2021; 9:692168. doi: 10.3389/fchem.2021.692168.

6.Joshi R.S., Jagdate S.S., Bansode S.B. et al. Discovery of potential multi-target-directed ligands by targeting hostspecific SARS-CoV-2 structurally conserved main protease.J. Biomol. Struct.Dyn. 2021; 39(9): 3099-3114. doi: 10.1080/07391102.2020.1760137.

7.Konwar M., Sarma D. Advances in developing small molecule SARS 3CLpro inhibitors as potential remedy for corona virus infection. Tetrahedron. 2021; 77: 131761. doi: 10.1016/j.tet.2020.131761.

8.Li Q., Kang C. Progress in developing inhibitors of SARS-CoV-2 3C-like protease. Microorganisms. 2020; 8(8): 1250. doi: 10.3390/microorganisms8081250.

9.Zhu Y., Scholle F., Kisthardt S.C., Xie D-Y. Flavonoids and dihydroflavonols inhibit the main protease activity of

 

SARS-CoV-2

and

the

replication

of

human

coronavirusVirology229E..

2022;

571:

21-33.

doi:

 

10.1016/j.virol.2022.04.005.

 

 

 

 

 

 

 

 

10.

Shah B., Modi P., Sagar S.R.In silico studies on therapeutic agents for COVID-19: drug repurposing approach.

 

Life Sci. 2020; 252: 117652. doi: 10.1016/j.lfs.2020.117652.

 

 

 

 

 

11.

Бабицкая С., Андрианов А., Тузиков А. Разработка потенциальных ингибиторов коронавируса SARS-CoV-

 

2. Наука и инновации. 2020; №7: 28-32.

 

 

 

 

 

 

 

12.

Forli S., Huey R., Pique M.E. et al. Computationalroteinp-ligand docking and

virtual

drug

screening

with

 

AutoDock suite. Nat. Protoc. 2016; 11(5): 905-919. doi: 10.1038/nprot.2016.051.

 

 

 

 

13.Aldeghi M., Heifetz A., Bodkin M.J. et al. Accurate calculation of the absolute free energy of binding for drug molecules. Chem. Sci. 2016; 7(1): 207-218. doi: 10.1039/c5sc02678d.

14.Saakre M., Mathew D., Ravisankar V. Perspectives on plant flavonoid quercetin-based drugs for novel SARS-

CoV-2. Beni. Suef. Univ. J. Basi. Appl. Sci. 2021; 10(1): 21. doi: 10.1186/s43088-021-00107-w.

15. Abian O., Ortega-Alarcon D., Jimenez-Alesanco A. et al. Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening. Int. J. Biol. Macromol. 2020; 164: 1693-1703. doi: 10.1016/j.ijbiomac.2020.07.235.

16.Печинский С.В., Оганесян Э.Т., Курегян А.Г. Поиск активных кандидатов в ряду флавоноидов в отношении возбудителя SARS-CoV-2 методом молекулярного докинга. Фармацевтическое дело и технология лекарств. 2021; (1): 22-35. doi: 10.33920/med-13-2101-02.

17.Khaerunnisa S., Kurniawan H., Awaluddin R. et al. Potential inhibitor of COVID-19 main protease (Mpro) from

several

medicinal

plant

compounds

by

molecular

. dockingPreprints. study2020.

doi:

10.20944/preprints202003.0226.v1.

 

 

 

 

 

18. Sampangi-Ramaiah M.H.,

VishwakarmaR., Shaanker R.U. Molecular docking analysis electedofs natural

products

from plants for

inhibition

of SARS-CoV-2

main

protease.Curr. Sci. 2020; 118(7): 1087-1092.

doi:

10.18520/cs/v118/i7/1087-1092.

19.Vijayakumar B.G., Ramesh D., Joji A. et alIn. silico pharmacokinetic and molecular docking studies of natural flavonoids and synthetic indole chalcones against essential proteins of SARS-CoV-2. Eur. J. Pharmacol. 2020; 886: 173448. doi: 10.1016/j.ejphar.2020.173448.

20.Zhang D-h., Wu K-l., Zhang X. et al. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. J. Integr. Med. 2020; 18(2): 152-158. doi: 10.1016/j.joim.2020.02.005.

21.Das S., Sarmah S., Lyndem S., Roy A.S. An investigation into the identificatioof potential inhibitors of SARS- CoV-2 main protease using molecular docking study. J. Biomol. Struct. Dyn. 2021; 39(9): 3347-3357. doi: 10.1080/07391102.2020.1763201.

22.da Silva F.M.A, da Silva K.P.A., de Oliveira L.P.M. et al. Flavonoid glycosides and tativetheir puhman

metabolites

as potential inhibitors of the SARS-CoV-2

main protease

(Mpro) and

RNA-dependent RNA

polymerase

(RdRp). Mem. Inst. Oswaldo Cruz. (Rio de

Janeiro). 2020;

115: e200207.

doi: 10.1590/0074-

02760200207.

 

 

 

23.Xia P.C.Y., Xun Y., Lu Y.C.et al. Network pharmacology and molecular docking analyses onLianhua Qingwen capsule indicate Akt1 is a potential target to treat and prevent COVID-19. Cell. Prolif. 2020; 53(12): e12949. doi: 10.1111/cpr.12949.

171

24. Rehman M.T., AlAjmi M.F.,

Hussain A. Natural compounds as

inhibitors of SARS-CoV-2 main protease

(3CLpro): a molecular docking

and simulation approach to combat

COVID-19. Curr. Pharmaceut. Des. 2021;

27(33): 3577-3589. doi: 10.2174/1381612826999201116195851.

25.Jin Z., Du X., Xu Y. et al. Structure ofMpro from SARS-CoV-2 and discovery of its inhibtors. Nature. 2020; 582(7811): 289-293. doi: 10.1038/s41586-020-2223-y.

26.Mengist H.M., Fan X., Jin T. Designing of improved drugs for COVID-19: crystal structure of SARS-CoV-2 main protease Mpro. Sig. Transduct. Target Ther. 2020; 5(7): 67. doi: 10.1038/s41392-020-0178-y.

27.Verma S., Pandey A.K. Factual insights of allosteric inhibition mechanism of SARS-CoV-2 main protease by quercetin: an in silico analysis. Z. Biotech. 2021; 11(2): 67. doi: 10.1007/s13205-020-02630-6.

28.Mouffouk C., Mouffouk S., Mouffouk S. et al. Flavonols as potential antiviral drugs targeting -CoVSARS-2 proteases (3CLpro and PLpro), spike protein, RNA-dependent RNA polymerase (RdRp) and angiotensin-converting enzyme II receptor (ACE2). Eur. J. Pharmacol. 2021; 891:173759. doi: 10.1016/j.ejphar.2020.173759.

29.Russo M., Moccia S., Spagnuolo C. et al. Roles of flavonoids against coronavirus infectionChem. . Biol. Interact. 2020; 328: 109211. doi: 10.1016/j.cbi.2020.109211.

30.Owis A.I., El-Hawary M.S., Amir D.E. et al. Molecular docking reveals the potentialSalvadoraof persica flavonoids to inhibit COVID-19 virus main proteaseRSC. Adv. 2020; 10(33): 19570-19575. doi: 10.1039/d0ra03582c.

31.Зверев Я.Ф. Флаваноиды глазами фармаколога. Особенности и проблемы фармакокинетики. Обзоры по клинической фармакологии и лекарственной терапии. 2017; 15(2): 4-11. doi: 10.17816/RCF1524-11.

32. Zverev Ya.F.,

Rykunova

A.Ya. Modern

nanocarriers as

a factor

in increasing abilitythebioandvail

pharmacological

activity

oflavonoidsf .

Appl. Biochem.

Microbiol.

2022; 58(9): 1-19.

doi:

10.1134/S0003683822090149.

 

 

 

 

 

33.Cherrak S.A., Merzouk H., Mokhtari-Soulimane N. Potential bioactive glycosylated flavonids as SARS-CoV-2 main protease inhibitors: a molecular docking and simulationtudies. PLoS One. 2020; 15(10): e0240653. doi: 10.1371/journal.pone.0240653.

34.Puttaswamy H., Gowtham H.G., Ojha M.D. et al.In silico studies evidenced the role of structurally diverse plant secondary metabolites in reducing SARS-CoV-2 pathogenesis. Sci. Rep. 2020; 10(1): 20584. doi: 10.1038/s41598- 020-77602-0.

35.Xu Z., Yang L., Zhang X. et al. Discovery of potential flavonoid inhibitors against COVID-19 3CL proteinase based on virtual screening strategy. Front. Mol. Biosci. 2020; 7: 556481. doi: 10.3389/fmolb.2020.556481.

36.Jo S., Kim S., Kim D.Y. et al. Flavonoids with inhibitory activity against SARS-CoV-2 3CLpro. J. Enzyme Inhib. Med. Chem. 2020; 35(1): 1539-1544. doi: 10.1080/14756366.2020.1801672.

37.Jo S., Kim S., Shin D.H., Kim M-S. Inhibition of SARS-CoV 3CL protease by flavonoids.J. Enzyme Inhib. Med.

Chem.2020; 35(1): 145-151. doi: 10.1080/14756366.2019.1690480.

 

 

38. Rizzuti B., Grande F., Conforti F. et al. Rutin is a low micromolar inhibitor

of-CoVSARS-2 main protease

3CLpro:

implications

for

drug

designquercetinof

analogs. Biomedicines.

2021; 9(4): 375.

doi:

10.3390/biomedicine9040375.

39.Mangiavacchi F., Botwina P., Menichetti E. et al. Seleno-functionalization of quercetin improves the non-covalent inhibiton of Mpro and its antiviral activity in cells against SARS-CoV-2. Int. J. Mol. Sci. 2021; 22(13): 7048. doi: 10.3390/ijms22137048.

40.Kumari A., Rajput V.S., Nagpal P. et al. Dual inhibition of SARS-CoV-2 spike and main protease through a repurposed drug, rutin. J. Biomol. Struct. Dyn. 2022; 40(11): 1-13. doi: 10.1080/07391102.2020.1864476.

41.Bharadwaj S., Dubey A., Yadava U. et al. Exploration of natural compounds with anti-SARS-CoV-2 activity via inhibition of SARS-CoV-2 Mpro. Brief Bioinform. 2021; 22(2): 1361-1377. doi: 10.1093/bib/bbaa.382.

42.Goyzueta-Mamani L.D., Barazorda-Ccahuana H.L., Mena-Ulecia K., Chavez-Fumagalli M.A. Antiviral activity of metabolites from Peruvian plants against SARS-CoV-2: an in silico approach. Molecules. 2021; 26(13): 3882. doi: 10.3390/molecules26133882.

43.Reffaat H., Mady F.M., Sarhan H.A. et alOptimization. and evaluation of propolis liposomes as a promising therapeutic approach for COVID-19. Int. J. Pharm. 2021; 592: 120028. doi: 10.1016/j.ijpharm.2020.120028.

44.Tatar G., Salmanli M., Dogru Y., Tuzuner T. Evaluation of the effectsof chlorhexidine and several flavonoids as antiviral purposes on SARS-CoV-2 main protease: molecular docking, molecular dynamics simulation studies.J. Biomol. Struct. Dyn. 2022; 40(17): 1-10. doi: 10.1080/07391102.2021.1900919.

45.Yoshino R., Yasuo N., Sekijma M. Identification of key interactions between SARS-CoV-2 main protease and inhibitor drug candidates. Sci. Rep. 2020; 10(1): 12493. doi: 10.1038/s41598-020-69337-9.

46.Agrawal P., Agrawal C., Blunden G. Rutin: a potential antiviral for repurposing as a SARS-CoV-2 Main protease (Mpro) inhibitor. Nat. Prod. Commun., 2021; 16(4): 1-12. doi: 10.1177/1934578X21991723.

47.Rahman F., Tabrez S., Ali R. et al. Molecular docking analysis of rutin reveals possible inhibtion of SARS-CoV-2 vital proteins. J. Tradit. Complement. Med. 2021; 11(2): 173-179. doi: 10.1016/j.jtcme.2021.01.006.

48.Sancineto L., Ostacolo C., Ortega-Alarcon D. et al. L-arginine improves solubility and SARS-CoV-2 Mpro activity of rutin but not the antiviral activity in cells. Molecules. 2021; 26(19): 6062. doi: 10.3390/molecules26196062.

172

Рекомендовано к покупке и изучению сайтом МедУнивер - https://meduniver.com/

49.

Yañez O., Osorio M.I., Areche C. et al. Theobroma cacao L. compounds: theoretical study and molecular modeling

 

as

inhibitors

of

main -CoVSARS-2

protease. Biomed.

Pharmacother. 2021; 140:

111764.

doi:

 

10.1016/j.biopha.2021.111764.

 

 

 

 

50.

Du A., Zheng R., Disoma C. et al. Epigallocatechin-3-gallate, an active ingredient of traditional Chinese medicines,

 

inhibits

the

3CLpro

activity

of -CoVSARS-2. Int. J.

Biol. Macromol. 2021,

176: 1-12.

doi:

10.1016/j.ijbiomac.2021.02.012.

51.Khan A., Heng W., Wang Y. et al.In silico and in vitro evaluation of kaempferol as a potential inhibitor of the SARS-CoV-2 main protease (3CLpro). Letter to the Phytothereditor. . Res. 2021; 35(6): 2841-2845. doi:10.1002/ptr.6998.

52.Rakshit G., Dagur P., Satpathy S. et al. Flavonoids as potential therapeutics against novel coronavirus disease-2019 (nCOVID-19). J. Biomol. Struct. Dyn. 2022; 40(15): 6989-7001. doi: 10.1080/07391102.2021.1892529.

53.Mathpal S., Sharma P., Joshi T. et al. Screening of potential bio-molecules from Moringa olifera against SARS- CoV-2 main protease using computational approachesJ.. Biomol. Struct. Dyn. 2022; 40(20): 9885-9896. doi: 10.1080/07391102.2021.1936183.

54.Kaul R., Paul P., Kumar S. et al. Promising antiviral activities of natural avonoidsfl against SARS-CoV-2 targets: systematic review. Int. J. Mol. Sci. 2021; 22(20): 11069. doi: 10.3390/ijms222011069.

55.Parihar A., Sonia Z.F., Akter F. et al. Phytochemicals-based targeting RdRp and main protease of SARS-CoV-2 using docking and steered molecular dynamic simulation: a promising therapeutic approach for tacking COVID-19. Comput. Biol. Med. 2022; 145:105468. doi: 10.1016/j.compbiomed.2022.105468.

56.Sharma A., Goyal S., Yada A.K. et al.In-silico screening of plant-derived antivirals against main protease, 3CLpro and endoribonuclease, NSP15 proteins of SARS-CoV-2. J. Biomol. Struct. Dyn. 2022; 40(1): 86-100. doi: 10.1080/07391102.

57.Xiao T., Cui M., Zheng C. et al. Myricetin inhibits SARS-CoV-2 viral replication by targeting Mpro and ameliorates pulmonary inflammation. Front. Pharmacol. 2021; 12: 669642. doi: 10.3389/fphar.2021.669642.

58.Qamar U.M.T., Alqahtani S.M., Alamri M.A., Chen L.L. Structural basis of SARS-CoV-2 3CLpro and anti-COVID- 19 drug discovery from medicinal plants. J. Pharm. Anal. 2020; 10(4): 313-319. doi: 10.1016/j.jpha.2020.03.009.

59. Kato Y., Higashiyama A., Takaoka E. et al. Food phytochemicals, epigallocatechin gallate and myricetin, covalently bind to the active site of the coronavirus main proteasein vitro. Adv. Redox Res. 2021; 3: 100021. doi: 10.1016/j.arres.2021.100021.

60.Xiao T., Wei Y., Cui M. et.al. Effect of dihydromyricetin on -SARSCoV-2 viral replication and pulmonary inflammation and fibrosis. Phytomedicine 2021; 91: 153704. doi: 10.1016/j.phymed.2021.153704.

61.Карева Е.Н., Булгакова В.А., Сереброва С.Ю. и др. Пандемия COVID-19: особенности механизма действия лекарственных средств. Экспериментальная и клиническая фармакология. 2021; 84(3): 28-40. doi: 10.30906/0869-2092-2021-84-3-28-40.

62.Gogoi N., Chowdhury P., Goswami A.et al. Computational guided identification of citrus flavonoid as potential inhibitor of SARS-CoV-2 main protease. Mol. Divers. 2021; 25(3): 1745-1759. doi: 10.1007/s11030-020-10150-x.

63.Yu R., Chen L., Lan R. et al. Computational screening of antagonistsgainsta the SARS-CoV-2 (COVID-19)

 

coronavirus

bymolecular

dockingInt. .

J. Antimicrob. Agents. 2020; 56(2): 106012.

doi:

 

10.1016/j.ijantimicag.2020.106012.

 

 

64.

Abdallah H.M., El-Halawany A.M., Sirwi A. et al. Repurposing of some natural product olatesis as SARS-CoV-2

 

main protease inhibitors viain vitro cell free and cell-based antiviral ssessmentsa and molecular modeling

 

approaches. Pharmaceuticals (Basel). 2021; 14(3): 213. doi: 10.3390/ph14030213.

 

65.

Solnier J., Fladerer -PJ. Flavonoids: a

complementary approach to conventional therapy of COVID-19?

 

Phytochem. Rev. 2021; 20(4): 773-795. doi: 10.1007/s11101-020-09720-6.

 

66.

Su H-X., Yao S., Zhao W-F. et

al. Anti-SARS-CoV-2 activates in vitro of Shuanghuanglian preparations

and

 

bioactive ingredients. Acta Pharmacol. Sin. 2020; 41(9): 1167-1177. doi: 10.1038/s41401-020-0483-6.

 

67.

Lin C., Tsai F-J., Hsu Y-M. et al. Study of Baicalin toward COVID-19 treatment: in silico target analysis and in

 

vitro inhibitory effects on SARS-CoV-2 proteases. Biomed. Hub. 2021; 6(3): 122-137. doi: 10.1159/000519564.

 

68.Saied E.M., El-Maradny Y.A., Osman A.A. et al. A comprehensive review about the molecular structure of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): insights into natural products against COVID-19. Pharmaceutics. 2021; 13(11): 1759. doi: 10.3390/pharmaceutics13111759.

69.Agrawal P.K., Agrawal C., Blunden G. Pharmacological significance of hesperidin and eretin,hsp two citrus flavonoids, as promising antiviral compounds for prophylaxis against and combating COVID-19. Nat. Prod. Commun. 2021; 16(10): 1-15. doi: 10.1177/1934578X211042540.

70.Al-Karmalawy A.A., Farid A.M., Mostafa A. et al. Naturally available flavonoid aglycones as potential antiviral drug candidates against SARS-CoV-2. Molecules. 2021; 26: 6559. doi: 10.3390/molecules26216559.

71.Bakour M., Laaroussi H., Ousaaid D. et al. New insights into potential beneficial effects of bioactive compounds of

bee products in boosting immunity to fight COVID-19 pandemic: focus on zinc and polyphenols.Nutrients. 2022; 14(5): 942. doi: 10.3390/nu14050942.

72. Utomo R.Y., Ikawati M., Meiyanto E. Revealing the potency of citrus and galangal constituen s to halt SARS- CoV-2 infection. Preprint. 2020. 1-8. doi: 10.20944/202003.0214.v1.

173

73.Agrawal P.K., Agrawal C., Blunden G. Naringenin as apossible candidate against SARS-CoV-2 infection and the pathogenesis of COVID-19. Nat. Prod. Commun. 2021; 16(12): 1-16. doi: 10.1177/1934578X211066723.

74.

Allam A.E., Assaf H.K., Hassan H.A. et al. Anin silico perception for newly isolated flavonoids from peach fruit

 

as privileged avenue for a countermeasure outbreak of COVID-19. RSC Adv. 2020; 10(50): 29983-29998. doi:

 

10.1039/d0ra05265e.

75.

Prasetyo W.E., Kusumaningsih T., Firdaus M. Nature as a treasure trove for-COVIDanti-19: luteolin and

 

naringenin from Indonesian traditional herbal medicine reveal potential SARS-CoV-2 Mpro inhibitors insight from

 

in silico studies. ChemRxiv. Cambridge: Cambridge Open Engage. 2020. doi: 10.26434/chemrxiv.13356842

76.Nguyen T.T.H., Jung -JH., Kim M-K. et al. The inhibitoryffects of plant derivate polyphenols on the main protease of SARS coronavirus 2 and their structure-activity relationship. Molecules. 2021; 26(7): 1924. doi: 10.3390/molecules26071924.

77.Tomic N., Pojskic L., Kalajdziic A. et al. Screening of preferential binding affinity of selected natural compounds to SARS-CoV-2 proteins usingin silico methods. Eurasian J. Med. Oncol. 2020; 4(4): 319-323. doi: 10.14744/ejmo.2020.72548.

78.Kralevska A., Velichkovska M, Cicimov V. et al. Finding potential inhibitors of COVID-19. Proc 14th Intern. Conf. Biomed. Eng. Syst. Technol. Bioinformatics. 2021; 3: 110-117. doi: 10.5220/0010246901100117.

79.Tallei T.E., Tumilaar S.G., Niode N.J. et al. Potential of plant bioactive compounds as SARS-CoV-2 main protease (Mpro) and spike (S) glycoprotein inhibitors: a molecular docking study.Scientifica (Cairo). 2020; 2020: 6307457. doi: 10.1155/2020/6307457.

80. Jahan R., Paul A.K., Bondhon T.A. et al. Zingiber

officinale, ayurvedic

uses of

the plant inandsilico binding

pro

of

SARS-CoV-2. Nat.

Prod.

Commun. 2021; 16(10):

studies of electeds phytochemicals with M

1934578X211031766. doi: 10.1177/1934578X211031766.

81.Ghosh R., Chakraborty A., Biswas A., Chowdhuri S. Evaluation of green tea polyphenols as novel coronavirus (SARS CoV-2) main protease (Mpro) inhibitors – an in silico docking and molecular dynamics simulation study.J. Biomol. Struct. Dyn. 2021, 39(12): 4362-4374. doi: 10.1080/07391102.2020.1779818.

82.Jamali N., Soureshjani E.H., Mobini G-R. et al. Medicinal plant compounds as promisinginhibitors of coronavirus (COVID-19) main protease: anin silico study. J. Biomol. Struct. Dyn. 2022; 40(17): 8073-8084. doi: 10.1080/07391102.2021.1906749.

83.Mhatre S., Srivastava T., Naik S., Patravale V. Antiviral activity of green tea and blackolyphenolstea in

 

prophylaxis

and

treatment

of

-19:COVIDa

reviewPhytomedicine.

2021; 85:

153286.

doi:

 

10.1016/j.phytomed.2020.153286.

 

 

-CoV-2 3CLpro main protease by plant polyphenols.

84.

Bahun M., Jukić M., Oblak D. et al. Inhibition of the SARS

 

Food Chem. 2022; 373(B): 131594. doi: 10.1016/j.foodchem.2021.131594.

 

 

 

85.

Chiou W-C., Chen J-C., Chen Y-T. et al. The inhibitory effects of PGG and EGCG against the SARS-CoV-2 3C-

 

like protease. Biochem. Biophys. Res. Commun. 2022; 591: 130-136. doi: 10.1016/j.bbrc.2020.12.106.

 

86.

Xiao T., Cui

M.,

Zheng Cet. al.

Both

baicalein and

gallocatechin gallate

effectively

inhibit SARS-CoV-2

replication by targeting Mpro and sepsis in mice. Inflammation. 2022; 45(3): 1076-1088. doi: 10.1007/s10753-021- 01602-z.

87.Gogoi B., Chowdhury P., Goswami N. et al. Identification of potential plant-based inhibitor against viral proteases of SARS-CoV-2 through molecular docking, MM-PBSA binding energy calculations and molecular dynanics simulation. Mol. Divers. 2021; 25(3): 1963-1977. doi: 10.1007/s11030-021-10211-9.

88.Bhardwaj V.K., Singh R., Sharma J. et al. Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors. J. Biomol. Struct. Dyn. 2021; 39(10): 3449-3458. doi: 10.1080/07391102.2020.1766572.

89.Bhatia S., Giri S., Lal A.F., Singh S. Battle against coronavirus: repurposing old friends (food borne polyphenols) for new enemy (COVID-19). Preprint 2020. doi: 10.26434/chemrxiv.12108546.

90.Peele K.A., Durthi C.P., Srihansa T. et al. Molecular docking and dynamic simulationr antiviralfo compounds

against

SARS-CoV-2:

a

computational

studyInform. . Med. Unlocked. 2020; 19: 100345.

doi:

10.1016/j.imu.2020.100345.

 

 

 

 

91.Ohgitani E., Shin-Ya.M., Ichitani M. et al. Significant inactivation of SARS-CoV-2 in vitro by a green tea catechin, a catechin-derivative, and black tea galloylated theaflavinsMolecules. . 2021; 26(12): 3572. doi: 10.3390/molecules261235572.

92. Godinho P.I.C., Soengas R.G., Silva V.L.M. Therapeutic potential of glycosyl flavonoids as-coronaviralanti agents. Pharmaceuticals (Basel). 2021; 14(6): 546. doi: 10.3390/ph14060546.

93.Báez-Santos Y.M., John S.E.S., Mesecar A.D. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antivir. Res. 2015; 115: 21-38. doi: 10.1016/j.antiviral.2014.12.015.

94.Osipiuk J., Azizi S-A., Dvorkin S. et al. Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nat. Commun. 2021; 12(1): 743. doi: 10.1038/s41467-021-21060-3.

95.Gold I.M., Reis N., Glaser F.,Glickman M.H. Coronaviral PLpro proteases and the immunomodulatory roles of conjugated versus free Interferon Stimulated Gene product-15 (ISG15). Semin. Cell. Dev. Biol. 2022; S10849521(22): 00215-4. doi: 10.1016/j.semcdb.2022.06.005.

96.Jiang H., Yang P., Zhang J. Potential inhibitors targeting papain-like protease of SARS-CoV-2: Two dirds with one stone. Front. Chem. 2022; 10: 822785. doi: 10.3389/fchem.2022.822785.

174

Рекомендовано к покупке и изучению сайтом МедУнивер - https://meduniver.com/

97.Yan S., Wu G. Spatial and temporal roles of SARS-CoV-2 PLpro – A snapshot. FASEB J. 2021; 35(1): e21197. doi: 10.1096/fj.202002271.

98.McClain C.B., Vabret N. SARS-CoV-2: the many pros of targeting PLpro.Signal. Transduct. Target. Ther. 2020; 5: 223. doi: 10.1038/s41392-020-00335-z.

99.Shin D., Mukherjee R., Grewe D. et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate

immunity. Nature. 2020; 587(7835): 657-662. doi: 10.1038/s41586-020-2601-5.

100.Kandeel M., Kitade Y., Fayez M. et al. The emerging RSSA-CoV-2 Papain-like protease: its relations hip with recent coronavirus epidemics. J. Med. Virol. 2021; 93(3): 1581-1588. doi: 10.1002/jmv.26497.

101.Calleja D.J., Lessene

G., Komander D. Inhibitors of SARS-CoV-2 PLpro. Front. Chem. 2022; 10: 876212. doi:

10.3389/fchem.2022.876212.

102.Klemm T.,

Ebert G., Calleja D.J. et al. Mechanism and inhibition of the papalikenprotease, PLpro, of SARS-

CoV-2. EMBO J. 2020; 39(18): e106275. doi: 10.15252/embj.2020106275.

103.Petushkova

A.I.,

Zamyatnin A.A. Papain-like protease as coronaviral drug targets: current inhibitors,

opportunities, and limitations. Pharmaceuticals. 2020; 13(10): 277. doi: 10.3390/ph13100277.

104.Laskar M.A., Choudhury M.D. Search for therapeutics against COVID-19 targeting SARS-CoV-2 papain-like protease: an in silico study. Res. Square Preprint. 2020: 1-28. doi: 10.21203/rs.3.rs-33294/v1.

105.Pitsillou E., Liang J., Ververis K. et al. Identification of small molecule inhibitors of the deubiquitinating activity of the SARS-CoV-2 papain-like protease: in silico molecular docking studies andin vitro enzymatic activity assay. Front. Chem. 2020; 8: 623971. doi: 10.3389/fchem.2020.623971.

106.Wu C., Liu Y., Yang Y. et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by

computational methods. Acta Pharm. Sin. B. 2020; 10(5): 766-788. doi: 10.1016/j.apsb.2020.02.008.

 

 

107.Chourasia M.C., Koppula P.R., Battu A. et al. EGCG, a green tea catechin, as a potentialrapeuticth

agent for

symptomatic

and

asymptomatic

CoVSARS-2 -

infection. Molecules. 2021; 26(5): 1200.

doi:

10.3390/molecules26051200.

108.Hiremath S., Kumar H.D.V., Nandan M.et al. In silico docking analysis revealed the potential of phytochemical present in Phyllanthus amarus and Andrographis paniculata, used in Ayurveda medicine in inhibiting SARS-CoV-

2. Z. Biotech. 2021; 11(2): 44. doi: 10.1007/s13205-020-02578-7.

109.Pitsillou E., Liang J., Ververi K. et al. Interaction of small molecules with the SARS-CoV-2 papain-like protese: in silico studies and in vitro validation of protease activity inhibition singu an enzymatic inhibition assay.J. Mol. Graph. Model. 2021; 104: 107851. doi: 10.1016/j.jmgm.2021.107851.

110.Cho J.K., Curtis-Long M.J., Lee K.H. et al. Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits Paulowniaof tomentosa. Bioorg. Med. Chem. 2013; 21(11): 3051-3057. doi: 10.1016/j.bmc.2013.03.027.

111.Park J-Y., Yuk H.J., Ryu H.W. et al. Evaluation of polyphenols fromBroussonetia papyrifera as coronavirus protease inhibitors. J. Enzyme Inhib. Med. Chem. 2017; 32(1): 504-512. doi: 10.1080/14756366.2016.1265519.

112.Rehman M.F., Akhter S., Batol A.I. et al. Effectiveness of natural antioxidants against SARS-CoV-2? Insights from the in-silico world. Antibiotics (Basel). 2021; 10(8): 1011. doi: 10.3390/antibiotics10081011.

113.Singh S., Sk M.F., Sonawane A. et al. Plant-derived natural polyphenols as potential antiviral drugs against SARS- CoV-2 via RNA-dependent RNA polymerase (RdRp) inhibition: an in-silico analysis. J. Biomol. Struct. Dyn. 2021; 39(16): 6249-6264. doi: 10.1080/07391102.2020.1796810.

114.Ahmad J., Ikram S., Ahmad F. et al. SARS-CoV-2 RNA dependent RNA polymerase (RdRp) – a drug repurposing study. Heliyon. 2020; 6(7): e045502. doi: 10.1016/j.heliyon.2020.e045502.

115.Elfiky A.A. Ribavirin, remdesivir, sofosbuvir, galidesivir, and tenofovir against SARA-CoV-2 RNA dependent RNA polymerase (RdRp): a molecular docking study. Life Sci. 2020; 253: 117592. doi: 10.1016/j.lfs.2020.117592.

116.Gao Y., Yan L., Huang Y. et al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science. 2020; 368(6492): 779-782. doi: 10.1126/science.abb7498.

117.Picarazzi F., Vicenti I., Saladini F. et al. Targeting theRdRp of emerging RNA viruses: het structure-based drug design challenge. Molecules. 2020; 25(23): 5695. doi: 10.3390/molecules25235695.

118.Yin W., Mao C., Luan X. et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS- CoV-2 by remdesivir. Science. 2020; 368(6498): 1499-1504. doi: 10.1126/science.abc1560.

119.Faisal S., Badshah S.L., Kubra B. et al. Computational study of SARS-CoV-2 RNA dependent RNA polymerase allosteric site inhibition. Molecules. 2021; 27(1) :223. doi: 10.3390/molecules27010223.

120.Mosquera-Yuqui F., Lopez-Guerra N., Moncayo-Palacio E.A. Targeting the 3CLpro and RdRp of SARS-CoV-2 with phytochemicals from medicinal plants of the Andean Region: molecular docking and molecular dynamics simulations. J. Biomol. Struct. Dyn. 2022; 40(5): 2010-2023. doi: 10.1080/07391102.2020.1835716.

121.Munafó F., Donati E., Brindani N. et al. Quercetin and luteolin are single-digit micromolar inhibitors of the SARS- CoV-2 RNA-dependent RNA polymerase. Sci. Rep. 2022; 12(1): 10571. doi: 10.1038/s41598-022-14664-2.

122.De Jesus-González L.A., Osuna-Ramos J.F., Reyes-Ruiz J.M. et al. Flavonoids and nucleotide analogs show high affinity for viral proteins of SARS-CoV-2 by in silico analysis: new candidates for the treatment of COVID-19. Res. Square. Preprint. 2020. doi: 10.21203/rs.3.rs-67272/v1.

175

123.Hamdy R., Mostafa A., Abo Shama N.M. et al. Comparative evaluation of flavonoids reveals the superiority and promising inhibition activity of silibinin ainstag SARS-CoV-2. Phytother Res. 2022; 36(7): 2921-2939. doi: 10.1002/ptr.7486.

124.Zandi K., Musall K., Oo A. et al. Baicalein and baicalin inhibit SARS-CoV-2 RNA-dependent-RNA polymerase. Microorganisms. 2021; 9(5): 893. doi: 10.3390/microorganisms9050893.

125.Rameshkumar M., Indu P., Arunagirinathan N. et al. Computational selection of flavonoid compounds as inhibitors against SARS-CoV-2 main protease, RNA-dependent RNA polymerase and spike proteins: a molecular docking study. Saudi J. Biol. Sci. 2021; 28(1): 448-458. doi: 10.1016/j.sjbs.2020.10.028.

126.Varughese J.K., Libin K.L.J., Sindhu K.S. et al. Investigation of the inhibitory activity of some dietary bioactive flavonoids against SARS-CoV-2 using molecular dynamics and MM-PBSA calculations. J. Biomol. Struct. Dyn. 2022; 40(15): 6755-6770. doi: 10.1080/07391102.2021.

127.Pendyala B., Patras A. In silico screening of food bioactive compounds to predict potential inhibitors of COVID-19 Main protease (Mpro) and RNA-dependent RNA polymerase (RdRp)ChemRxiv. . Preprint. 2020. doi: 10.26434/chemRxiv.12051927.

128.Wu Y., Crich D., Pegan S.D. et al. Polyphenols as potential inhibitors of SARS-CoV-2 RNA dependent RNA polymerase (RdRp). Molecules. 2021; 26(24): 7438. doi: 10.3390/molecules26247438.

129.Shang J., Ye G., Shi K. et al.Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020; 581(7807): 221-224. doi: 10.1038/s41586-020-2179-y.

130.Han D.P., Penn-Nicholson A., Cho M.W. Identification of critical determinants on ACE2 for SARS-CoV entry and development of a potent entry inhibitor. Virology. 2006; 350: 15-25.

131.Letko M.C., Munster V. Functional assessmentoof cell entry and receptor use for lineage B β-coronaviruses, including 2019-nCoV. Nature Microbiology. 2020; 5: 562-569. doi: 10.1038/s41564-020-0688-y.

132.Maiti S., Banerjee A. Epigallocatechin gallate and theaflavin gallate interaction in SARS-CoV-2 spike-protein central channel with reference to the hydroxychloroquine interaction: bioinformatics and molecular docking study. Drug Dev. Res. 2021; 82(1): 86-96. doi: 10.1002/ddr.21730.

133.Lan J., Ge J., Shan S. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020; 581(7807): 215-220. doi: 10.1038/s41586-020-2180-5.

134.Wang Q., Zhang Y., Wu L. et al. Structural and functional sisba of SARS-CoV-2 entry by using human ACE2. Cell. 2020; 181(4): 894-904.e9. doi: 10.1016/j.cell.2020.03.045.

135.Takeda M. Proteolytic activation of SARS-CoV-2 spike protein.Microbiol. Immunol. 2022; 66(1): 15-23. doi: 10.1111/1348-0421.12945.

136.Unni S., Aouti S., Thiyagarajan S., Padmanabhan B. Identification of a repurposed drug as an inhibitor of Spike protein of human coronavirus SARS-CoV-2 by computational methods. J. Biosci. 2020; 45: 130. doi: 10.1007/s12038-020-00102-w.

137.Essalmani R., Jain J., Susan-Resiga D. et al. Distinctive roles of furin and TMPRSS2 in SARS-CoV-2 infectivity. J. Virol. 2022; 96(8): e00128-22. doi: 10.1128/jvi.00128-22.

138.Frolova E.I., Palchevska O., Lukash T. et al. Acquisition of furin cleavage site and further SARS-CoV-2 evolution change the mechanisms of viral entry, infection spread, and cell gnalingsi. J. Vrol. 2022; 96(15): eoo75322. doi: 10.1128/jvi.00753-22.

139.Lavie M., Dubuisson J., Belouzard S. SARS-CoV-2 spike furin cleavage site and S2 basicesiduesr modulate the entry process in a host cell-dependent manner. J. Virol. 2022; 96(13): e0047422. doi: 10.1128/jvi.00474-22.

140.Wang S., Qiu Z., Hou Y. et al. AXL is a candidate receptor for SARS-CoV-2 that promotes infection of pulmonary and bronchial epithelial cells. Cell. Res. 2021; 21(2): 126-140. doi: 10.1038/s41422-020-00460-y.

141.Muralidar S., Gopal G., Ambi S.V. Targeting the viral-entry facilitators of SARS-CoV-2 as a therapeutic strategy in COVD-19. J. Med. Virol. 2021; 93(9): 5260-5276. doi: 10.1002/jmv.27019.

142.Hoffmann M., Kleine-Weber H., Schraeder S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181: 271-280. doi: 10.1016/j.cell.2020.02.052.

143.Yamamoto M., Gohda J., Kobayashi A. et al. Metalloproteinase-dependent and TMPRSS2-independent cell surface entry pathway of SARS-CoV-2 requires the furin cleavage site and the S2 domain of spike protein. mBio. 2022; 13(4): e0051922. doi: 10.1128/mbio.00519-22.

144.Pandit M., Latha N. In silico studies reveal potential antiviral activity of phytochemicals from medicinal plants for the treatment of COVID-19 infection. Res. Sq. Preprint. 2020:1-10. doi: 10.21203/rs-22687/v1.

145.Ubani A., Agwom F., Nathan R.S. et al. Molecular docking analysis of some phytochemicals on twoSARS-CoV-2 targets. Potential lead compounds against two target sites of SARS-CoV-2 obtained from plants. bioRxiv Preprint. 2020. doi: 10.1101/2020.03.31.017657.

146.Pandey P., Khan F., Rana A.K. et al. A drug repurposing approach towards elucidating the potential of flavonoids

as COVID-19 spike protein inhibitorsBiointerface.

Res. Appl.

Chem.

2021; 11(1): 8482-8501. doi:

10.33263/BRIAC111.84828501.

 

 

 

147.Ahmad M., Rashid S., Ahmad T. Spike protein

of -CoVSARS-2

as a

potential target forytochemicalph

constituents: a literature review. JSTMU. 2021; 4(2): 124-130. doi: 10.32593/jstmu/vol4.Iss2.169.

148.Bhowmik D., Nandi R., Prakash A., Kumar D. Evaluation of flavonoids as 2019-nCoV cell entry inhibitor through molecular docking and pharmacological analysis. Heliyon. 2021; 7: e06515.

176

Рекомендовано к покупке и изучению сайтом МедУнивер - https://meduniver.com/

149.Stalin A., Lin D., Kannan B.S. et al. Anin-silico approach to identify hot spots in SARS-CoV-2 spike RBD to block the interaction with ACE2 receptorJ. Biomol. . Struct. Dyn. 2022; 40(16): 74087423- . doi: 10.1080/07391102.2021.1897682.

150.Teli D.M., Shah M.B., Chhabria M.T.In silico screening of natural compounds as potential inhibitors of SARS-

CoV-2 main protease and spike

RBD: targets

for

COVID-19. Front. Mol.

Biosci.

2021; 7:599079. doi:

10.3389/fmolb.2020.599079.

 

 

 

 

 

 

 

151.Houchi S., Messasma ZExploring.

the inhibitory

potential ofSaussurea costus

and

Saussaria

involucrate

phytoconstituents against the Spike

glycoprotein receptor

binding domain

of

SARS-CoV-2 Delta

(B.1.617.2)

variant and the main protease (Mpro) as therapeutic candi ates using Molecular docking, DFT, and ADME/Tox studies. J. Mol. Struct. 2022; 1263: 133032. doi: 10.1016/j.molstruc.2022.133032.

152.El-Missiry M., Fekri A., Kesar L.A., Orthman A.I. Polyphenols are potential nutritionaljwadnts for targeting COVID-19. Phytother. Res. 2020; 35(6): 2879-2889. doi: 10.1002/ptr.6992.

153.Liu X., Raghuvanshi R., Ceylan F.D., Bolling B.W. Quercetin and its metabolites inhibitecombinantr human angiotensin-converting enzyme 2 (ACE2) activityJ. Agric. Food Chem. 2020; 68(47): 13982-13989. doi: 10.1021/acs.jafc.0c05064.

154.Chen Y., Liu Q., Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J. Med. Virol. 2020; 92(4): 418-423. doi: 10.1002/jmv.25681.

155.Wan Y., Shang J., Graham R. et al. Receptor recognition by the novel coronavirusfrom Wuhan: an analysis based on decade-long structural studies of SARS coronavirus.J. Virol. 2020; 94(7): e00127-20. doi: 10.1128/JVI.0012720.

156.Yan Y-M., Shen X., Cao Y-K. et al. Discovery of anti-2019-nCoV agents from 38 Chinese patent drugs towards respiratory diseases via docking screening. Preprints. 2020. doi: 10.20944/preprints202002.0254.v2.

157.Abdel-Mottaleb M.S.A., Abdel-Mottaleb Y. In search for effective and safe drugs against SARS-CoV-2: Part 1) Stimulated interactions between selected nutraceuticals, ACE2 enzyme and S Protein simple peptide sequences. ChemRxiv. Preprint. 2020. doi: 10.26434/chemrxiv.12155235.v1.

158.Balmeh N., Mahmoudi S., Mohammadi N., Karabedianhajiabadi A. Predicted therapeutic targets for COVID-19 disease by inhibiting SARS-CoV-2 and its related receptors. Inform. Med. Unlocked. 2020; 20: 100407.

159.Chen H., Du Q. Potential natural compounds for preventing SARS-CoV-2 (2019-nCoV) infection. Preprint. 2020. doi: 10.20944/preprints202001.0358.v3.

160.Liu W., Zheng W., Cheng L. et al. Citrus fruits are rich in flavonoids for immunoregulation and potential targeting ACE2. Nat. Prod. Bioprospect. 2022; 12(1): 4. doi: 10.1007/s13659-022-00325-4.

161.Ngwa W., Kumar E., Thompson D. et al. Potential of flavonoidinspiredphytomedicines against COVID-19. Molecules. 2020; 25(11): 2707. doi: 10.3390/molecules25112707.

162.Smith M.D., Smith J. Repurposing therapeutics for COVID-19: Supercomputer-based docking to the SARS-CoV-2 viral spike protein and viral spike -humanprotein ACE2 interfaceChemRxiv. . Preprint. 2020. doi: 10.26434/chemrxiv.11871402.v4

163.Alzaabi M.M., Hamdy R., Ashmawy N.S. et al. Flavonoids are promising safe therapy against -19COVID. Phytochem. Rev. 2022; 21: 291-312. doi: 10.1007/s111010021—09759-z.

164.Pizzorno J. Are antiviral flavonoids part ofthe solution to the COVID-19 pandemic? Integr. Med (Encinitas). 2021; 20(6): 8-13.

165.Shawan M.M.A.K., Halder S.K., Hasan A. Luteolin and abyssinone II as potential inhibitors of SARS-CoV-2: an in silico molecular modeling approach in battling the COVID-19 outbreak. Bull. Natl. Res. Cent. 2021; 45: 27. doi: 10.1186/s42269-020-00479-6.

166.Joshi T., Joshi T., Sharma P. et al.In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular dockingEur.. Rev. Med. Pharmacol. Sci. 2020; 24(8): 4529-4536. doi: 10.26355/eurev_202004_21036.

167.Ahmad I., Pawara R., Surana S., Patel H. The repurposed ACE2 inhibitors: SARS-CoV-2 entry blockers of Covid19. Top. Curr. Chem. 2021; 379: 40. doi: 10.1007/s41061-021-00353-7.

168.Shadrack D.M., Deogratias G., Kiruri L.W. et al. Luteolin: a blocker of SARS-CoV-2 cell entry based on relaxed complex scheme, molecular dynamics simulation, and metadynamicsJ. .Mol. Model. 2021; 27(8): 221. doi: 10.1007/s00894-021-04833-x.

169.Pandey P., Rane J.S., ChatterjeeA. et al. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in silico study for drug development.J. Biomol. Struct. Dyn. 2021, 39(16): 63066316. doi: 10.1080/07391102.2020.1796811.

170.Meneguzzo F., Ciriminna R., Zabini F., Pagliaro M. Review of evidence available on hespridin-rich products as potential tools against COVID-19 and hydrodynamic cavitationbasedextraction as a method of increasing their production. Processes. 2020; 8: 549. doi: 10.3390/pr8050549.

171.Basu A., Sarkar A., Maulik U. Computational approach for the design of potential spikeoteinpr binding natural compounds in SARS-CoV2. Res. Sq. Preprint. 2020; doi: 21203/rs.3.rs-33181/v1.

172.Chikhale R.V., Gupta V.K., Eldesoky G.E. et al. Identification of potential anti-TMPRSS2 natural products through homology modelling virtual screening and molecular dynamics simulation studies. J. Biomol. Struct. Dyn. 2020: 1- 16. doi: 10.1080/07391102.2020.1798813.

177

173.Беседнова Н.Н., Андрюков Б.Г., Запорожец Т.С. и др. Полифенолы из наземных и морских растений как ингибиторы репродукции коронавирусов. Антибиотики и химиотерапия. 2021; 66(3-4): 62-81. doi: 10.37489/0235-2990-2021-66-3-4-62-81.

174.da Silva Antonia A., Wiedemann L.S.M., Veiga-Junior V.F. Natural products’ role against COVID-19. RSC Adv. 2020; 10: 23379-23393. doi: 10.1039/d0ra03774e.

175.Rahman N., Basharat Z., Yousuf M. et al. Virtual screening of natural products against type II transmembrane serine protease (TMPRSS2), the priming agent of coronavirus 2 (SARS-CoV-2). Molecules. 2020; 25(10): 2271.

doi: 10.3390/molecules25102271.

176.Jibin K.V., Kavitha J., Sindhu K.S. et al. Identification of some dietary flavonoids asntialpoteinhibitors of TMPRSS2 through protein-ligand interaction studies and binding free energy calculations. Res. Sq. Preprint. 2022; doi: 10.21203/rs.3.rs-1209434/v1.

177.Peng M., Watanabe S., Chan K.W.K. et al. Luteolin restricts dengue virus replication through inhibition of the proprotein convertase furin. Antiviral Res. 2017; 143: 176-185. doi: 10.1016/j.antiviral.2017.03.026.

178.Devi K.P., Pourkarim M.R., Thijssen M. et al. A perspective on the applications of furin inhibitors for the treatment of SARS-CoV-2. Pharmacol. Rep. 2022; 74: 425-430. doi: 10.1007/s43440-021-00344-x

178

Рекомендовано к покупке и изучению сайтом МедУнивер - https://meduniver.com/