Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Joseph I. Goldstein, Dale E. Newbury [et al.]. Scanning Electron Microscopy and X-Ray Microanalysis. (2017). (ISBN 978-1-4939-6674-5). (ISBN 978-1-4939-6676-9). (DOI 10.1007978-1-4939-6676-9).pdf
Скачиваний:
20
Добавлен:
11.04.2023
Размер:
68.34 Mб
Скачать

547 AA–EP

Index

A

Aluminum wire failures  482–483 Anaglyph stereo pair presentation  218 Ancient impact zircons  493

Angular distribution, backscattered electrons 24–25

Auger electron emission  48 Auger electron spectroscopy  37 Avogadro’s number  4

B

Backscattered electrons (BSEs)  2, 549, vii

– angular distribution  24–25

– atomic number contrast  19–20

– energy distribution  29–30

η vs. atomic number, Z  17–19

η vs. surface tilt, θ  21–23

– numerical measure  16

– origin  16

– spatial distribution  25–29

– topographic contrast—number effects  23–24 Backscattered electron yield data  584–563 Beam convergence angle, α  80–81

Beam current  79–80, 214 Beam current density  80 Beam diameter  79

Beam energy  78–79, 297, 330. See also Low beam energy SEM; Low beam energy X-ray microanalysis

– compositional contrast with backscattered electrons  213

– high resolution SEM imaging  214

vs. secondary electrons (SE) yield  40

– topographic contrast

– with backscattered electrons  213

– with secondary electrons  213 Beam placement  414

Beam solid angle  81–83 Bethe expression  2, 3 Brightness equation  83

BSEs. See Backscattered electrons (BSEs)

Bulk biological and organic specimens  355–356 Bulk specimens

– origins of geometric effects  396–397

– particle analysis

– optimum spectra  410–414

– quantitative analysis of particles  415–420

– uncertainty in  420–422

– X-ray measurements  408–410

– X-ray spectrum imaging (XSI)  414–415

– with rough surfaces  399–401

C

Carbonado diamond  492–493 CASINO simulation  5–7 Cathodoluminescence (CL)

– applications of

– geology  492–493

– materials science  493–495

– organic compounds  495–497

– collection of  491

– detection of  491–492

– measurement  491

– origin  490–491 Compositional mapping

– limitations of  427–429

– MAXIMUM PIXEL spectrum  433–435

– quantitative compositional mapping  436–441

– SUM spectrum  431–433

– total intensity region-of-interest ­mapping  426–427

– X-ray spectrum imaging (XSI)  429–431

– EDS dead-time  441–443

– elemental mapping data collection  441–450

– flash mapping  444–445

– high count mapping  445–450

– pixel density  443–444

– pixel dwell time  444–450 Concentration limit of detection (CDL)

– reference value  362–363

– trace or minor constituent  359–362 Continuous energy loss approximation  2

D

A Database of Electron-Solid Interactions (Joy)  37 Detective quantum efficiency (DQE)  101–103 DTSA-II EDS software

– design  255

– fundamental concepts  256–264

– GUI  267–279

– Monte Carlo simulation  267

– motivation  254

– optional tables  279–283

– overview  254–255

– platform  254

– simulation  264–267

– three-leg stool

– experiment design  256

– quantification  255

– simulation  255

E

EDS. See Energy dispersive X-ray spectrometry (EDS) Electron backscattering diffraction (EBSD)  xiii

– align sample  510–511

– check for EBSD patterns  511–512

– checklist

– acquisition parameters  522

– candidate crystallographic phases  522

– EBSD detector  521–522

– microscope operating conditions  522

– orientation map  522–523

– pattern optimization  522

– specimen considerations  521

– index patterns  508–509

– map parameters  512

– measurements  509–510

– origin of  505–506

– pattern detection  506–507

– sample preparation for  510

– spatial resolution  507–508

Electron beam, interaction volume change

– elastic scattering  3–4

– elastic scattering cross section  4

– inelastic scattering  2–3

– Monte Carlo calculations

– beam electron interaction volume  7–8

– composition  8–9

– electron interaction volume  7

– electron trajectory simulation  4–5

– incident beam energy  9–10

– Monte Carlo simulation (CASINO simulation) 5–7

– size of the interaction volume  11–12

– specimen tilt  10–11

– specimen atoms  2

Electron-excited X-ray microanalysis, geometric effects  398

Electron interaction volume  363–364 Electron optical brightness, β  83 Electron optical parameters

– astigmatism  85–87

– beam convergence angle, α  80–81

– beam current  79–80

– beam current density  80

– beam diameter  79

– beam energy  78–79

– beam solid angle  81–83

– electron optical brightness, β  83

– focus  83–87

Electron probe microanalyzers (EPMAs)  91 Electron–solid interactions, database of  548 Energy dispersive X-ray microanalysis checklist

– analytical procedure  477

– calibrating the EDS detector

– detector position  473–474

– energy calibration  472–473

– probe current  474

– pulse process time constant  472

– quality control  473

– sample orientation  473

– working distance/pecimen-to-EDS distance  473

– collecting data

– collecting peak-fitting references  475

– collecting spectra from unknown  475–476

– collecting standards  475

– experiment optimization  474

– exploratory spectrum  474

– reference spectra  475

– selecting standards  474

– data analysis  476

– instrumentation

– conductive coater  471

– EDS detector  470–471

– SEM  470

– peak reference materials  472

– quality check  476–477

– quantification  476

– results  477

– sample preparation  471

– standard materials  472

548\ Index

Energy dispersive X-ray spectrometry (EDS)  xi

– adequate counts  297–298

– beam current  330–332

– beam energy  297, 330

– coincidence peaks  294–295

– detection process

– coincidence peaks  231–233

– peak broadening  228–231

– Si absorption edge  233–234

– Si-escape peak  231

– Si internal fluorescence peak  233–234

– detector dead-time  297

– detector time constant  297

– electron-excited EDS operation

– beam current  235–237

– channel width and number  235

– EDS time constant  234

– solid angle  235

– exciting characteristic X-rays  287–288

– fluorescence yield  288

– lower photon energy region  300–301

– manual peak identification  301–305

– manual qualitative analysis  296–297

– minor and trace constituents  301

– parameters

– calibration  330

– solid angle  330

– spectrum channel energy width  328–329

– spectrum energy span  328–329

– time constant  329–330

– pathological electron scattering

– trace analysis artifacts  364–369

– peaks, identifying  299

– principles, qualitative EDS analysis  287

– QC project  246–249

– QC tools within DTSA-II  246

– quality assurance issues  286

– quality measurement environment

– detector geometry  237–240

– detector orientation  240–245

– energy calibration linearity  245

– optimal working distance  240

– process time  240

– Si escape peak  293

– silicon drift detector (SDD)

– low X-ray flux  250–251

– moderate resolution  251

– output count rate with live-time dose  249–250

– resolution and peak position stability  250

– software tools  298–299

– trace level measurement  363–364

– X-ray absorption  288–289

– X-ray energy database  289–292 Energy distribution, backscattered

electrons 29–30

EPMAs. See Electron probe microanalyzers (EPMAs)

Everhart–Thornley detector  99–100, 128, 129–130, 213, 215

F

Fiji  204–206

Focused ion beams (FIB), xiii

– cross-section preparation  530–532

– focused ion beam systems  527–528

– imaging with ions  528–529

– ion–solid interactions  526–527

– SEM, sample preparation  530

– 3D techniques and imaging  532–536

G

Geometric factors

– bulk specimens  396–397

– electron-excited X-ray microanalysis  398

– useful indicators of

– EDS spectrum  404–406

– raw analytical total  401–404

– rough bulk samples  406–408 Graphical user interface (GUI)  90, 204

H

Hard-facing alloy bearing surface  480–482 Helium ion microscope (HIM)  xiv

High resolution imaging

– achieving visibility  178

– beam footprint  162–164

– delocalized signals  162–164

– instrumentation considerations  162

– pathological specimen and instrumentation behavior

– contamination  179

– instabilities  179

– pathological specimen behavior  178–179

– pixel size  162–164

– secondary electron contrast  164–165

– beam range  167

– bright edge effect  167

– critical dimension metrology  167–169

– isolated edges  165–167

– with secondary electrons  169–171

– beam energy strategies  171–173

– low loss BSEs  176–178

– SE1 signal  173–176

– SEM  162

HIM. See Helium ion microscope (HIM)

I

Image defects

– charging

– control charging artifacts  153–155

– define  148–149

– in SEM images  149–152

– contamination  157–158

– image defocusing (blurring)  113–117

– Moiré effects  158–159

– projection distortion (foreshortening)  111–113

– radiation damage  155–157 Image formation

– calibrating the image  107–109

– image defects

– image defocusing (blurring)  113–117

– projection distortion (foreshortening)  111–113

– image dimensions  107

– ImageJ-Fiji, calibrated structure in  109–110

– ImageJ-Fiji, routine linear measurements with  110

– magnification  107

– scale bars  107

– by scanning action  106–107

– stereomicroscopy

– qualitative stereomicroscopy  118–121

– quantitative stereomicroscopy  121–124

– surface measurement  117–118 ImageJ-Fiji

– calibrated structure in  109–110

– routine linear measurements with  110 ImageJ universe  204

Imaging crystalline materials

– acquired data  512–513

– application  518–521

– cleaning EBSD data  516–517

– electron channeling contrast

– electron backscattering diffraction (EBSD)  504–512

– instrument conditions  504

– specimen preparation  504

– map components  513–516

– polycrystalline materials  502–503

– single crystals  500–502

– transmission Kikuchi diffraction (TKD)    517–518

Incident beam energy  9–10 Ink-Jet printer deposits  224–226

International Union of Pure and Applied Chemistry (IUPAC)  51

Ion beam microscopy

– chemical microanalysis  546

– generating ion beams  541–542

– helium ion microscope (HIM)

– current generation and data collection 543–545

– operating the  545–546

– patterning with  545

– signal generation in  542–543

– patterning with ion  545

– usefulness  538–541

J

Java Runtime Environment (JRE)  205

K

Kanaya–Okayama range  11–12, 60, 182 k-ratio

– analytical total  310

– converting sets of  310

– define  308–309

– element by difference  311

– estimate CZ  310–311

– matrix corrections  316–317

– matrix effects, physical origin of  317

– normalization  310

– oxygen by assumed stoichiometry  311

– quantitative electron-excited X-ray microanalysis

– standardless analysis  314–316

– standards-based k-ratio protocol  313–314

– reporting composition

– atomic fraction  312

– mass fraction  311–312

– oxide fractions  312–313

– stoichiometry  312

Index

– sets of  309

– uncertainties in  309

– waters of crystallization  311

– ZAF factors, microanalysis  317–324 k-ratio/matrix correction protocol

– alkali element migration  349–353

– Ba-Ti interference  337–338

– beam-sensitive specimens  349

– complex metal alloy, IN100  340, 341

– with DTSA II  333–334

– Hall method  353–356

– instrumentation requirements  328

– iterative qualitative and quantitative analysis strategy  338–339

– major constituents  334–336

– repeated qualitative–quantitative analysis sequences  343–347

– specimen and standards  328

– specimen homogeneous  347–349

– stainless steel  340–343

L

Landing energy  79

Lead-acid battery plate reactions  494–495 Light-optical analogy, Everhart–Thornley

(positive bias) detector  131–133 Long-range secondary X-ray fluorescence  364 Low beam energy SEM

– backscattered electron signal characteristics 182–185

– constituent  182

– extremely low beam energy imaging  187

– high depth resolution SEM  185–186

– for high lateral resolution SEM  185

– Kanaya–Okayama range  182

– secondary electron  182–185

Low beam energy X-ray microanalysis

– advantage of

– improved spatial resolution  381–382

– low atomic number elements  382–385

– reduced matrix absorption correction  382

– challenges and limitations

– reduced access to elements  385–387

– surface layers  388–393

– vertical heterogeneity  387–388

– constitutes  376–380

– low beam energy analysis range  381

– peak selection strategy  380–381

M

Magnification vs. pixel dimension  163 Manganese nodule  483–488 Modeled detectors

– aluminum layer  261–263

– azimuthal angle  261

– crystal thickness  261

– dead layer  263

– detector area  261

– elevation angle  261

– energy scale  261

– gold layer  261–263

– material editor dialog  264–266

– Mn Kα, resolution at  261

– nickel layer  261–263

– number of channels  261

– optimal working distance  259–260

– panel containing properties  256, 257

– sample-to-detector distance  261

– window type  258–259

– zero offset  261

– zero strobe discriminator  263 Monte Carlo calculations

– beam electron interaction volume  7–8

– composition  8–9

– electron interaction volume  7

– electron trajectory simulation  4–5

– incident beam energy  9–10

– Monte Carlo simulation (CASINO simulation)  5–7

– size of the interaction volume  11–12

– specimen tilt  10–11

Monte Carlo electron trajectory simulation  4–5

Monte Carlo simulation  5–7

– DTSA-II EDS software  267

– X-ray generation  62–63

N

National Institutes of Health (NIH)  204 NIST DTSA II simulation  364

O

Open Microscopy Environment

(OME)  204

Overscanning  414

P

Particle absorption effect  415–420 Particle analysis

– optimum spectra  410–414

– quantitative analysis of particles  415–420

– uncertainty in  420–422

– X-ray measurements  408–410

– X-ray spectrum imaging (XSI)  414–415 Particle mass effect  415

Particle sample preparation  413–414 Plugins  206–209

Q

Quantitative compositional mapping, 436–441

R

Robust light-optical analogy  131

S

Scanning electron microscope (SEM)

– compositional microstructure  ix

– crystal structure  xii–xiii

– dual-beam platforms, combined electron and ion beams  xiii–xiv

– electron-optical parameters  vii–ix

– elemental composition  x–xii

– specimen property information  ix–x

549 AE–SP

– three-dimensional structure  ix–x

– topography  ix, x

Scanning electron microscope (SEM) image interpretation

– compositional microstructure

– atomic number contrast, calculation  127–128

– atomic number contrast with backscattered electrons  126–127

– BSE atomic number contrast with Everhart–Thornley detector  128

– information in  126

– specimen topography  128–129

– Everhart–Thornley detector  129–130

– light-optical analogy  130–133

– with semiconductor BSE detector  133–136

Scanning electron microscope (SEM) images

– Rose visibility criterion  139

– signal quality  138–145

– signal-to-noise ratio  138

Scanning electron microscope (SEM) imaging checklist

– beam current

– high resolution imaging  214

– low contrast features  214

– beam energy

– compositional contrast with backscattered electrons  213

– high resolution SEM imaging  214

– topographic contrast with backscattered electrons  213

– topographic contrast with secondary electrons  213

– electron detector

– backscattered electron detectors  213

– Everhart–Thornley detector  213

– electron signals available

– backscattered electrons  212

– beam electron range  212

– secondary electrons (SEs)  212–213

– image interpretation

– annular BSE detector  215

– contrast encoding  215

– direction of illumination  214

– Everhart–Thornley detector  215

– observer’s point of view  214

– semiconductor BSE detector  215

– image presentation

– live display adjustments  214

– post-collection processing  214

– specimen considerations  212

– VPSEM  215

Scanning electron microscope (SEM) instrumentation

– detective quantum efficiency (DQE)  101–103

– detector characteristics

– bandwidth  97

– electron detectors, angular measures for  96–97

– energy response  97

– electron beam parameters  78

– electron detectors

– abundance  95

– angular distribution  95

– backscattered electrons  97–99

– kinetic energy response  95–96

550\ Index

Scanning electron microscope (SEM) instrumentation (cont.)

– electron optical parameters

– astigmatism  85–87

– beam convergence angle, α  80–81

– beam current  79–80

– beam current density  80

– beam diameter  79

– beam energy  78–79

– beam solid angle  81–83

– electron optical brightness, β  83

– focus  83–87

– imaging modes  87–88

– high-current mode  90–92

– high mode  88–90

– low-voltage mode  94–95

– resolution mode  93–94

– secondary electron detectors

– Everhart–Thornley detector  99–100

– through-the-lens (TTL) electron detectors  100

– specimen current  100–101

Scanning electron microscopist and X-ray microanalyst (SEMXM)  204

Scanning transmission electron microscope (STEM) image  175–176

Secondary electron energy spectrum  34–35

Secondary electrons (SE)  2, 549, vii

– angular distribution of  39–40

– energy distribution  34–35

– escape depth  35–37

– origin  34

– spatial characteristics of  40–43

– yield vs. atomic number  37–38

– yield vs. beam energy  40

– yield vs. specimen tilt  38–39 Secondary electron yield data  553–584 Secondary yields  549

SEM/EDS

– limits of detection for  358–359

– remote excitation sources  370–373 Semiconductors  493–494

Shallow surface relief  222–224 Silicon drift detector (SDD)

– low X-ray flux  250–251

– moderate resolution  251

– output count rate with live-time dose  249–250

– resolution and peak position stability  250 Single pixel measurement  222

Spatial distribution, backscattered electrons

– depth distribution  26–28

– Monte Carlo simulation  25

– radial distribution  28–29 Spectrum imaging (SI)  xi Stopping powers  549–550

T

Thin section analysis  353–355 3D viewer plugin tool  218, 219

Transmission Kikuchi diffraction (TKD)  517–518

V

Variable pressure scanning electron microscopy (VPSEM)  vii

– contrast in  200–201

– conventional SEM high vacuum environment

– beam integrity  190

– difference from  190–191

– Everhart–Thornley secondary electron detector  190

– minimizing contamination  190

– stable electron source operation  190

– EDS collimator  456–458

– elevated pressure microscopy, detectors for

– backscattered electrons, passive scintillator detector  198–199

– secondary electrons, gas amplification detector  199–200

– favorable sample characteristics  461–462

– gas scattering effects in  452–456, 460–461

– scanning electron microscopy at elevated pressures

– focused electron beam  193–196

– image resolution  196–198

– specimen charging  191–192

– water environment of specimen  192–193

– solve practical problems  461

– unfavorable sample characteristics  462–468

– X-ray spectrometry  458–460

X

X-ray ionization cross sections  550 X-rays

– characteristic of

– families  50–51

– fluorescence yield  48–50

– intensity  53–56

– isolated atoms  53–54

– nomenclature  51

– origin  46–47

– thick, solid specimens  55–56

– thin foils  54–55

– weights of lines  51–53

continuum (bremsstrahlung)  56–57

– absorption  65–75

– continuum intensity  57–58

– depth distribution function,Φ(ρz)  64–65

– electron-excited X-ray spectrum  58–59

– fluorescence  75–76

– Monte Carlo simulation  62–63

– range of  60–62

X-ray spectrum imaging (XSI)

– compositional mapping  429–431

– EDS dead-time  441–443

– elemental mapping data collection  441–450

– flash mapping  444–445

– high count mapping  445–450

– pixel density  443–444

– pixel dwell time  444–450

– particle analysis  414–415