Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
студ ивт 22 материалы к курсу физики / лаконично физ мех сто элма опт кв мехг.doc
Скачиваний:
5
Добавлен:
17.11.2022
Размер:
6.41 Mб
Скачать

14.1.1.4. График гармонического колебания

14.2 Дифференциальное уравнение гармонических колебаний

14.2.1 Колеблющиеся системы

Рассмотрим колебания в трех системах:

а) колебания заряда в колебательном контуре L,C;

б) колебания грузика, прикрепленного к пружине;

в) колебание физического маятника - любого тела, совершающего колебания вокруг горизонтальной оси, не проходящей через его центр тяжести.

 

14.2.2 Колеблющиеся величины

q - заряд

x - координата грузика

φ - угол отклонения

 

14.2.3. Уравнения движения

Закон Ома (10.7)

Второй закон Ньютона (4.6)

Уравнение динамики вращательного движения (7.3)

 

14.2.4. Применим закон движения, т.е. учтем особенности наших систем:

Используя другое обозначение производной получим после несложных преобразований:

Мы получили дифференциальные уравнения, описывающие движения наших систем. В первых двух случаях уравнения одинаковы по форме, в третьем случае второй член уравнения содержит не φ, а Sin φ . Если рассматривать только малые отклонения маятника от положения равновесия, то тогда, при φ << 1, Sin φ ≈ φ и мы имеем:

.

Введем обозначения:

,

,

,

,

,

.

14.2.5. Дифференциальное уравнение колебательного движения

Для всех трех рассмотренных случаев имеем одно и то же дифференциальное уравнение колебательного движения

.

14.2.6. Решение дифференциального уравнения

Решением дифференциального уравнения называется функция, обращающая это уравнение в тождество.

Нетрудно проверить прямой подстановкой, что в нашем случае решение имеет вид:

,

т.е. является гармонической функцией. Значит уравнение , это дифференциальное уравнение гармонических колебаний.

14.3. Сложение колебаний

14.3.1. Векторная диаграмма

Векторная диаграмма - это способ графического задания колебательного движения в виде вектора.

Аналитическое задание колебательного движения

 

Графическое задание колебательного движения

Вдоль горизонтальной оси откладывается колеблющаяся величина ξ (любой физической природы). Вектор , отложенный из точки 0 равен по модулю амплитуде колебания A и направлен под углом α , равным начальной фазе колебания, к оси ξ. Если привести этот вектор во вращение с угловой скоростью ω , равной циклической частоте колебаний, то проекция этого вектора на ось ξ дает значение колеблющейся величины в произвольный момент времени.

14.3.2. Сложение колебаний одинаковой частоты и одинакового направления

Пусть складывается два колебания:

строим векторные диаграммы и складываем векторы:

По теореме косинусов .

Так как

,

то

.

Очевидно (см. диаграмму), что начальная фаза результирующего колебания определяется соотношением:

.