Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конпект ~ток 80 листов.doc
Скачиваний:
23
Добавлен:
17.11.2019
Размер:
3.45 Mб
Скачать

3.6. Эквивалентные преобразование в цепи синусоидального тока

Цепь с последовательно соединенными активным и реактивным элементами (r и х), представленную на рисунке 3.25,а, необходимо преобразовать в эквивалентную схему, изображенную на рисунке 3.25,б, с параллельно соединенными активной и реактивной проводимостями (g и b). Или наоборот, цепь с параллельным соединением элементов, необходимо преобразовать в цепь, с последовательным соединением элементов. По обеим цепям протекает одинаковый по величине ток I, сдвинутый по фазе на один угол φ.

При преобразовании последовательно соединенных элементов r и х в эквивалентно параллельные, исходными являются сопротивление активного и реактивного элементов. Необходимо определить эквивалентные сопротивления параллельно соединенных g и b, и наоборот - при преобразовании параллельно соединенных элементов g и b в эквивалентно последовательные, исходными являются сопротивление активного и реактивного элементов. Необходимо определить эквивалентные сопротивления последовательно соединенных r и х.

Эквивалентное преобразование означает, что при одном и том же напряжении U на зажимах в цепи протекает одинаковые по величине токи I сдвинутые по фазе на одинаковый угол .

Эквивалентное преобразование означает, что из сети потребляется одинаковая активная, реактивная и полная мощности.

Из приведенной схемы (рис. 3.25,а) следует, что

.

Из схемы (рис. 3.25, б), следует:

.

Принимая во внимание, что обе схемы эквивалентны, имеем:

.

Из полученных выражений можно получить формулы эквивалентных преобразований:

при преобразовании параллельного соединения в последовательное имеем: .

при преобразовании последовательного соединения в параллельное имеем: .

Эти эквивалентные преобразования лежат в основе расчёта разветвлённых электрических цепей методом проводимости.

3.7. Расчет разветвленных цепей синусоидального тока методом проводимостей

Метод применяется для разветвленных цепей с одним источником питания.

Допустим, имеется схема электрической цепи переменного тока, приведенная на рисунке 3.26.

Рассмотрим основные этапы расчета.

1. Последовательно соединенные элементы в параллельных ветвях (2, 3, 4) преобразуем в эквивалентные параллельные. В результате схема будет иметь вид, представленный на рисунке 3.27.

Проводимости каждой ветви соответственно равны:

.

В результате в параллельных ветвях получились только однородные элементы.

2. Заменим параллельно соединенные активные и реактивные сопротивления эквивалентными. В результате получим схему, приведенную на рисунке 3.28.

Эквивалентные проводимости

;

.

Предположим, что b2 > b3 тогда элемент b23 имеет емкостной характер (рис. 3.28).

  1. Параллельно соединенные проводимости g23 и b23 преобразуем в эквивалентно последовательные r23 и x23, получим схему, представленную на рисунке 3.29.

Сопротивления преобразованной схемы соответственно равны

, .

  1. Полученная схема имеет только последовательно соединенные элементы.

Определяем полное сопротивление эквивалентной схемы: .

  1. Определяем токи в ветвях.

    1. Ток

    2. Определяем токи в параллельных ветвях.

      1. Определяем напряжение на зажимах параллельной ветви: .

5.2.2. Токи в параллельных ветвях соответственно равны:

.

Пример 3.3. Возможные варианты расчета разветвленных цепей синусоидального тока методом проводимости, рассмотрим на примере электрической цепи, представленной на рисунке 3.30. Заданы величины U23 = 120 (B), r1 = 5 (Ом), r2 = 9 (Ом), r3 = 12 (Ом), r4 = 7 (Ом), хС1 = 12 (Ом), хС2 = 12 (Ом), хL3 = 16 (Ом), хL4 = 24 (Ом). Необходимо определить токи во всех ветвях электрической цепи.

1. Последовательно соединенные элементы в параллельных ветвях (2 и 3) преобразуем в эквивалентные параллельные. В результате схема будет иметь вид, представленный на рисунке 3.31.

Проводимости каждой ветви соответственно равны:

(См),

(См),

(См),

(См).

В результате в параллельных ветвях получились только однородные элементы.

2 . Заменим параллельно соединенные активные и реактивные сопротивления эквивалентными. В результате получим схему, приведенную на рисунке 3.32.

Эквивалентные проводимости

(См),

(См).

Так как b23 < 0, то b 23 - емкостной элемент.

3. Параллельно соединенные проводимости g23 и b23 преобразуем в эквивалентно последовательные r23 и x23, получим схему, представленную на рисунке 3.33.

Сопротивления преобразованной схемы:

активное - (Ом),

реактивное - (Ом),

полное - (Ом).

4. Полученная схема имеет только последовательно соединенные элементы, определяем полное сопротивление эквивалентной схемы:

(Ом).

5. Определяем токи в ветвях.

5.1. Токи в параллельных ветвях соответственно равны:

(А),

(А).

5.2. Общий ток (А).

6. Определяем напряжение, приложенное к схеме:

(В).