Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
EKZAMEN_PO_ELEKTROTEKhNIKE.docx
Скачиваний:
16
Добавлен:
27.09.2019
Размер:
1.93 Mб
Скачать

61.Теристор-это полупроводниковый прибор с 3-мя p-n-переходами и предназначенный для переключения электро-сигналов.

Теристоры,устройство:2 крайних слоя P1 и N2-эммиторы и P1-анод,а N2-катод,2 средних слоя N1 и P2-база,электрод к которому приложено напряжение называется управляющим электродом.

Свойства: переходы P1 и P2-открыты и их сопротивление мало, поэтому на вольт-амперной характеристике рост тока незначитилен, поэтому при достижении U пробоя происходит ловинное увеличение зарядов, сопротивление перехода P2 уменьшаеться,т.к. он разрушаеться и так через него ловинообразно возростает,при снятии напряжения св-ва теристора востонавливаеться.

Приминение: Электронные ключи,управляемые выпрямители,преобразователи (инверторы),регуляторы мощности (диммеры),CDI.

Условное обозночение,маркировка:КД10НА,где К-кремний,Д-диод,10Н-№ разработки,А-разновидность диода.КТ808А,где К-кремний,Т-транзистор,8-функциональные возможности,08-№ разработки,А-разновидность.

Схема теристора:

62.Фотоэлектронными приборами называються приборы работа которых основана на явлениях вызываемых действиями лучистой энергии.

Фотоэлектронная эммисия-процэсс выхода электронов под действием лучистой энергии в окружающую среду,за счёт её появляеться фототок,Iф=кф-1u1-з-н СталетоваЮ,где к-чувствительный фотоэлемент.

Фотопроводимостью называеться св-ва ещества изменять свою электропроводимость под действием оптического излучения,электронной,полупроводниковой,электроприборов св-ва которого изменяеться под действием света или излучения называеться фотоэлементом.

Фотогальвонический эффект - возникновение электрич. тока при освещении образца-полупроводника или диэлектрика, включённого в замкнутую цепь (фототок), или возникновение эдс на освещаемом образце при разомкнутой внеш. цепи (фо-тоэдс). Различают два типа Ф. э.

Виды фотоэлементов: Сурьмяно-цезиевый фотоэлемент, использующий явление внешнего фотоэффекта, Фотоэлемент на основе поликристаллического кремния.фотоэлементы промышленного назначения.

Они применяются в фотоэлектронных умножителях, обозначаются Jф.

Схемы:

63.Структурная схема выпрямителя:

Это устройство преднозначено для преоброзования переменного тока,напряжение постоянным,элементы включения это диоды,конденсаторы,теристоры.

Однополупериодная схема:

Прстейшая 1-нополупериодный выпрямитель состоит из последовательно включенного источника диода и нагрузки.Пременное синусоидально напряжение подаёться под дилд и положительная полуволна пропускаеться им,а отрицательная закрывает его.

64. 2-ух полупериодная схема выпрямителя со средней точкой 1-нофазного трансформатора:

Мостовая схема выпрямителя:

В 2-ухпериодных схемах для создания тока в нагрузке используют оба полупериода 1-го напряжения блогодаря чему пульсация уменьшаеться.В 1-ый полупериод работает диод D1,а 2-ой D2,причём ток в нагрузке проходит в 1-ом направлении.

При работе выпрямителя диоды работают попарно пропуская в нагрузку ток в 1-ом направлении,процэсс выпрямления характерезуеться выпрямленным напряжением,которое можно рассчитать U0=0,9U2,I0=U0/Rн.

65.Выпрямление 3-ёх фазного тока:однополупериодная: Однополупериодные выпрямители применяются крайне редко, но с ними связано одно заблуждение, которое хочется развеять.

Итак, схема выпрямителя. Чтобы получить результат «в чистом виде», конденсатор фильтра я исключаю, но это не принципиально.

Двухполупериодного:

66.Сглаживающие фильтры: работа, для уменьшения выпрямленного напряжения и тока.

Т.к. пульсирующая кривая состоит из множества перменных величин,то задача фильтра пропустить постоянную составляющую f=0 в нагрузку и отфильтровать все переменные составляющие с читотой f не равна 0.

Схема:

Выпрямители на теристорах: все выше рассмотренные схемы выпрямителей могут быть выполнены на теристорах, т.е. управляемых ветвях. 67. Каскады усиления

Каскад усиления — ступень усилителя, содержащая один или несколько усилительных элементов, цепи нагрузки и связи с предыдущими или последующими ступенями.

В качестве усилительных элементов обычно используются электронные лампы или транзисторы (биполярные, полевые), иногда, в некоторых специальных случаях, могут применяться и двухполюсники, например, туннельные диоды (используется свойство отрицательного сопротивления) и др. Полупроводниковые усилительные элементы (а иногда и вакуумные) могут быть не только дискретными (отдельными) но и интегральными (в составе микросхем), часто в одной микросхеме реализуется полностью законченный усилитель.

В зависимости от способа включения усилительного элемента различаются каскады с общей базой, общим эмиттером, общим коллектором (эмиттерный повторитель) (у биполярного транзистора), с общим затвором, общим истоком, общим стоком (истоковый повторитель) (у полевого транзистора) и с общей сеткой, общим катодом, общим анодом (у ламп)

Каскад с общим эмиттером (истоком, катодом) — наиболее распространённый способ включения, позволяет усиливать сигнал по току и напряжению одновременно, сдвигает фазу на 180°, то есть является инвертирующим.

Каскад с общей базой (затвором, сеткой) — усиливает только по напряжению, применяется редко, является наиболее высокочастотным, фазу не сдвигает.

Каскад с общим коллектором (стоком, анодом) — называется также повторителем (эмиттерным, истоковым, катодным), усиливает ток, оставляя напряжение сигнала равным исходному. Применяется в качестве буферного усилителя. Важными свойствами повторителя являются его высокое входное и низкое выходное сопротивления, фазу не сдвигает.

Каскад с распределенной нагрузкой — каскад, занимающий промежуточное положение между схемой включения с общим эмиттером и общим коллектором. Как вариант каскада с распределенной нагрузкой, выходной каскад усилителя мощности «двухподвес». Важными свойствами являются задаваемый элементами схемы фиксированный коэффициент усиления по напряжению и низкие нелинейные искажения. Выходной сигнал дифференциальный.

Каскодный усилитель — усилитель, содержащий два активных элемента, первый из которых включен по схеме с общим эмиттером (истоком, катодом), а второй — по схеме с общей базой (затвором, сеткой). Каскодный усилитель обладает повышенной стабильностью работы и малой входной ёмкостью. Название усилителя произошло от словосочетания «КАСКад через катОД» (англ. CASCade to cathODE)[1]

Каскады усиления могут быть однотактными и двухтактными.

Однотактный усилитель — усилитель, в котором входной сигнал поступает во входную цепь одного усилительного элемента или одной группы элементов, соединённых параллельно.

Двухтактный усилитель — усилитель, в котором входной сигнал поступает одновременно во входные цепи двух усилительных элементов или двух групп усилительных элементов, соединённых параллельно, со сдвигом по фазе на 180°.Усилительный каскад с общей базой (ОБ) — одна из трёх типовых схем построения электронных усилителей на основе биполярного транзистора. Характеризуется отсутствием усиления по току (коэффициент передачи близок к единице, но меньше единицы), высоким коэффициентом усиления по напряжению и умеренным (по сравнению со схемой с общим эмиттером) коэффициентом усиления по мощности. Входной сигнал подаётся на эмиттер, а выходной снимается с коллектора. При этом входное сопротивление очень мало, а выходное — велико. Фазы входного и выходного сигнала совпадают.

Особенностью схемы с общей базой является минимальная среди трёх типовых схем усилителей «паразитная» обратная связь с выхода на вход через конструктивные элементы транзистора. Поэтому схема с общей базой наиболее часто используется для построения высокочастотных усилителей, особенно вблизи верхней границы рабочего диапазона частот транзистора. Достоинствами схемы являются стабильные температурные и частотные свойства, то есть параметры схемы(коэффициент усиления напряжения, тока и входное сопротивление) остаются неизменными при изменении температуры окружающей среды. Недостатками схемы являются малое входное сопротивление и отсутствие усиления по току. При схеме включения биполярного транзистора с общим эмиттером (ОЭ) входной сигнал подаётся на базу, а снимается с коллектора. При этом выходной сигнал инвертируется относительно входного (для гармонического сигнала фаза выходного сигнала отличается от входного на 180°). Каскад усиливает и ток, и напряжение. Данное включение транзистора позволяет получить наибольшее усиление по мощности, поэтому наиболее распространено. Однако при такой схеме нелинейные искажения сигнала значительно больше. Кроме того, при данной схеме включения на характеристики усилителя значительное влияние оказывают внешние факторы, такие как напряжение питания, или температура окружающей среды. Обычно для компенсации этих факторов применяют отрицательную обратную связь, но она снижает коэффициент усиления.Содержание [убрать]

1 Описание

2 Усилительный каскад с общим эмиттером

3 Переключательный каскад с общим эмиттером

4 См. также

5 Ссылки

[править]

Описание

Биполярные транзисторы управляются током. В схеме с ОЭ — током базы. Напряжение на переходе база-эмиттер при этом остаётся почти постоянным и зависит от материала полупроводника, для германия около 0,2 В, для кремния около 0,7 В, но на сам каскад подаётся управляющее напряжение. Ток базы, коллектора и эмиттера и другие токи и напряжения в каскаде можно вычислить по закону Ома и правилам Кирхгофа для разветвлённой многоконтурной цепи.

Токи в транзисторе связаны нижеследующими соотношениями:

по правилу Кирхгофа для узлов алгебраическая сумма всех трёх токов () равна нулю

, где

— коэффициент усиления транзистора по току в схеме с общим эмиттером,

— коэффициент передачи тока эмиттера.

Коэффициент усиления по току: Iвых/Iвх=Iк/Iб=Iк/(Iэ-Iк) = α/(1-α) = β [β>>1]

Входное сопротивление: Rвх=Uвх/Iвх=Uбэ/Iб

Достоинства:

Большой коэффициент усиления по току

Большой коэффициент усиления по напряжению

Наибольшее усиление мощности

Можно обойтись одним источником питания

Выходное переменное напряжение инвертируется относительно входного.

Недостатки:

Худшие температурные и частотные свойства по сравнению со схемой с общей базой

[править]

Усилительный каскад с общим эмиттером

При положении рабочей точки в середине входных величин на проходной характеристике каскад с ОЭ имеет одно центральное устойчивое состояние, отклонения от центрального состояния и крайние состояния — неустойчивы, каскад при этом является усилителем гармонических сигналов.

[править]

Переключательный каскад с общим эмиттером

При смещении рабочей точки в одно из двух крайних состояний на проходной характеристике каскад с ОЭ имеет два устойчивых крайних состояния и неустойчивое центральное состояние, каскад при этом является переключательным, работает в ключевом режиме, как реле (закрыт, открыт) и применяется как инвертор в логических элементах. Как и контактные группы реле, переключательные каскады могут быть нормально закрытыми (разомкнутыми) и нормально открытыми (замкнутыми), это определяется положением рабочей точки на проходной характеристике.

Коэффициент усиления по току: Iвых/Iвх=Iк/Iэ=α [α<1]

Входное сопротивление Rвх=Uвх/Iвх=Uбэ/Iэ.

Входное сопротивление для схемы с общей базой мало и не превышает 100 Ом для маломощных транзисторов (для мощных - ещё меньше), так как входная цепь транзистора при этом представляет собой открытый эмиттерный переход транзистора.

Достоинства:

Хорошие температурные и частотные свойства.

Высокое допустимое напряжение

Недостатки схемы с общей базой :

Малое усиление по току, так как α < 1

Малое входное сопротивление

Два разных источника напряжения для питания.

68. генератором незыв. электронная схема, преобразующая постоянный ток источника питания в переменный ток определенной частоты и формы. Всякая генераторная схема имеет в своем составе активный элемент и частично- избирательную систему.

В качестве активных элементов могут использоваться транзисторы, электронные лампы, интегральные усилители, туннельные диоды. Частично избирательная система, определяющая частоту колебаний, может представлять собой резонансный LC контур либо другой резонирующий элемент, например кварц, или фазирующую rc –цепь.

Генераторы классифицируются по форме выходного напряжения тока, частоте и способу управления.

В зависимости от формы выходного напряжения различают генераторы гармонических (синусоидальных) колебаний и импульсные, выходное напряжение которых изменяется по закону, отличному от синусоидального.

По частоте генерируемых сигналов генераторы подразделяются на низкочастотные (0.01….100 кГц), высокочастотные (0.1….100мГц) и сверхвысокочастотные (свыше 100 мГц).

По способу управления генераторы бывают с самовозбуждением и независимым возбуждением. В автогенераторах режим устойчивых автоколебаний наступает при подключении схемы к источнику питания. В генераторах с независимым возбуждением режим колебаний возникает под действием внешнего управляющего сигнала.

Генераторы гармонических колебаний применяются в радтотехнике, в измерительных и регулирующих устройствах ультразвуковой обработки материалов.

Импульсные генераторы находят применение в информационно – вычислительной технике в качестве задающих и тактирующих генераторов.

69. Электронно-лучевая трубка представляет собой электронно-лучевой прибор для осциллографии, приёма телевизионных изображений, электронно-лучевых коммуникаторов и ряда других областей техники. Во всех этих приборах создается тонкий пучок электронов (электронный луч), управляемый с помощью электрических или магнитных полей. Существует большое разнообразие электронно-лучевых трубок. Они могут быть с фокусировкой электронного луча электрическим или магнитным полем и с электрическим или магнитным отклонением луча; электронно-лучевые трубки бывают с различными цветами изображения на люминесцирующем экране; с различной длительностью свечения экрана (так называемое послесвечение). Они различаются также по размерам экрана, материалом баллона и другим признакам. Рис. 8.7. Устройство электронно-лучевой трубки (а), условное обозначение (б): 1 – нить накала; 2 – катод; 3 – модулятор; 4 – ускоряющий электрод; 5, 6 – первый и второй аноды; 7, 8 – отклоняющие пластины; 9 – экранирующее покрытие; 10 – экран; 11 – стеклянная колба

Катод 2 предназначен для создания эмиссии электронов; выполняется в виде цилиндра, внутри которого располагается подогреватель в виде нити накала 1. На донышко катода наносится оксидный слой – смесь окислов щелочных металлов, который снижает работу выхода электрона из металла и улучшает, таким образом, эмиссионную способность катода. Вокруг катода располагается управляющий электрод, называемый модулятором 3, цилиндрической формы с отверстием в донышке. Этот электрод служит для управления плотностью электронного потока и для его предварительной фокусировки. На модулятор подаётся небольшое отрицательное напряжение относительно катода.

Следующие электроды 5 и 6 также цилиндрической формы называются анодами. В простейшем случае их только два. На второй анод 6 подаётся очень высокое напряжение относительно катода 1, а на первом аноде 5 напряжение несколько меньше. Внутри анодов обычно устанавливают перегородки с отверстиями, называемые диафрагмами.

Под действием высокого напряжения, подаваемого на аноды 5 и 6, возникает сильное электрическое поле. При включении подогрева катода 2 он нагревается и начинает эмитировать электроны. Под действием сильного электрического поля электроны начинают разгоняться, причём, поскольку на их пути стоит модулятор 3 с отрицательным потенциалом относительно катода, то они испытывают с его стороны отталкивающее, тормозящее действие. Поэтому электроны преодолевают модулятор по самому центру его отверстия, собираясь в узкий пучок. Если увеличивать отрицательный потенциал модулятора, то всё меньшее количество электронов будет проходить через его отверстие, а при некотором значении этого потенциала электронный поток вообще прекратится, так как все электроны будут отталкиваться модулятором назад к катоду. Если электроны преодолели модулятор, то затем они будут ускоренно двигаться по направлению к анодам, но поскольку напряжение на втором аноде 6 значительно выше, чем на первом, от электроны пролетают первый анод насквозь, причём, пролетая сквозь диафрагмы с отверстиями, электроны подвергаются действию электрических полей этих диафрагм, которые играют роль электронных линз, обеспечивающих окончательную фокусировку электронного луча. Скорость электронов возрастает настолько, что они пролетают насквозь и второй анод и продолжают движение к люминесцирующему экрану 10.

Рассмотренное устройство, состоящее из катода, модулятора и анодов, называется электронной пушкой. Далее на пути следования электронного луча устанавливают две пары металлических отклоняющих пластин, вертикальных 7 и горизонтальных 8. Разность потенциалов, подаваемая на две пластины, заставляет электронный луч отклоняться в сторону положительной пластины.

Таким образом, две пары отклоняющих пластин позволяют управлять электронным лучом в горизонтальной и вертикальной плоскости. Попадая на экран, поток быстролетящих электронов вызывает свечение люминофора, и на экране будет видно светящееся пятно, которое можно перемещать в любую точку экрана и изменять интенсивность его свечения.

Электроны, попадая на экран, передают ему свой заряд, и в результате создаётся электрическое поле, тормозящее движение электронов. Яркость свечения станет уменьшаться и может вообще прекратиться попадание электронов на экран. Поэтому необходимо отводить отрицательный заряд с экрана. Для этого служит экранирующее покрытие 9. Это слой графита, который наносится на внутреннюю поверхность баллона и соединяется со вторым анодом 6. Электроны, попадая на экран с большой скоростью, выбивают с его поверхности вторичные электроны, которые тут же направляются к проводящему слою. Поэтому потенциал на экране и на проводящем слое примерно одинаковый. 70. микроэлектро́ника

(интегральная электроника), область электроники, связанная с созданием и применением в радиоэлектронной аппаратуре узлов и блоков, выполненных на интегральных схемах и микроминиатюрных вспомогательных изделиях (разъёмах, переключателях и т. д.), часто с использованием различных приборов (опто-, акусто-, криоэлектронных, ионных, тепловых и др.). Микроэлектроника сформировалась в нач. 60-х гг. 20 в. Её возникновение в кон. 50-х гг. и последующее бурное развитие было вызвано усложнением и расширением областей применения электроники, необходимостью уменьшения габаритных размеров и массы, снижения стоимости, повышения быстродействия и надёжности электронной аппаратуры и наращиванием объёмов её производства. Современная микроэлектроника базируется на использовании физических эффектов в полупроводниках.

Основу микроэлектроники составляют интегральные схемы (преимущественно полупроводниковые), выполняющие функции блоков и узлов электронной аппаратуры, в которых объединено большое число элементов и электрических соединений, изготовляемых в едином технологическом процессе. Наиболее распространены монолитные полупроводниковые интегральные схемы, которые в зависимости от числа входящих в их состав элементов условно делятся на малые (МИС – до 10² элементов на кристалл), средние (СИС – до 103 элементов на кристалл), большие (БИС – до 10⁴ элементов на кристалл), сверхбольшие (СБИС – до 106 —107 и более элементов на кристалл). Развивается в направлении уменьшения размеров элементов, размещаемых на поверхности или в объёме кристалла отдельных интегральных схем (на 2003 г. для наиболее распространённых интегральных схем – кремниевых – эти размеры доведены до 0.18—0.1 мкм), повышения степени их интеграции (до 107 и более элементов на кристалл), увеличения максимальных размеров кристалла (до 80—100 ммІ). Для изделий микроэлектроники характерны наиболее быстрые в мире техники темпы разработки и освоения их промышленного производства. Непрерывный прогресс обеспечивается постоянным совершенствованием технологии, опирающейся на новейшие достижения в области физики твёрдого тела, химии, прикладной математики. Формирование микронных и субмикронных элементов интегральных схем осуществляется с помощью процесса микролитографии – точного переноса изображения интегральных схем в заданном масштабе с оригинала (шаблона) на полупроводниковую пластину. Используются фотолитография в видимой и ультрафиолетовой областях спектра, рентгенолитография и электронно-лучевая литография. Эти методы дают возможность довести расстояние между соседними элементами до 0.10 мкм. Успехи микроэлектроники позволили создать на одном полупроводниковом кристалле целый микропроцессор.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]