Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика ответы оптика.doc
Скачиваний:
18
Добавлен:
27.09.2019
Размер:
1.32 Mб
Скачать
  1. Тепловое излучение, характеристики, закон планка.

Теплово́е излуче́ние — электромагнитное излучение с непрерывным спектром, испускаемое нагретыми телами за счёт их тепловой энергии.

Энергетическая светимость тела -- физическая величина, являющаяся функцией температуры и численно равная энергии, испускаемой телом в единицу времени с единицы площади поверхности по всем направлениям и по всему спектру частот.

Спектральная плотность энергетической светимости — функция частоты и температуры характеризующая распределение энергии излучения по всему спектру частот (или длин волн).

Можно доказать, что спектральная плотность энергетической светимости, выраженная через частоту и длину волны, связаны соотношением:

Поглощающая способность тела — — функция частоты и температуры, показывающая, какая часть энергии электромагнитного излучения, падающего на тело, поглощается телом в области частот dw вблизи w

Формула Планка — выражение для спектральной плотности мощности излучения абсолютно чёрного тела, которое было получено Максом Планком. Для плотности энергии излучения

величина которых связана с частотой излучения выражением: Коэффициент пропорциональности впоследствии назвали постоянной Планка. (h).

Вывод формулы: Выражение для средней энергии колебания с частотой ω дается выражением:

где — h постоянная Планка, k — постоянная Больцмана.

Количество стоячих волн в трёхмерном пространстве равно:

  1. Основные законы теплового излучения

Закон смещения Вина даёт зависимость длины волны, на которой поток излучения энергии чёрного тела достигает своего максимума, от температуры чёрного тела.

где T — температура в кельвинах, а — лямбда длина волны с максимальной интенсивностью в метрах. Следует отметить, что коэффициент b, называемый постоянной Вина,, в данной формуле имеет при этом размерность [ м К].

Для частоты света (в Герцах) закон смещения Вина имеет вид:

где α ≈ 2.821439... Гц/К — постоянная величина, k — постоянная Больцмана, h — постоянная Планка, T — температура (в Кельвинах).

  1. Условия возникновения интерференции.

Интерференция света — перераспределение интенсивности света в результате наложения(суперпозиции) нескольких световых волн. Это явление сопровождается чередующимися в пространстве максимумами и минимумами интенсивности. Её распределение называется интерференционной картиной.

Интерферировать могут все волны, однако устойчивая интерференционная картина будет наблюдаться только в том случае, если волны имеют одинаковую частоту и колебания в них не ортогональны. Интерференция может быть стационарной и нестационарной. Стационарную интерференционную картину могут давать только полностью когерентные волны. Например, две сферические волны на поверхности воды, распространяющиеся от двух когерентных точечных источников, при интерференции дадут результирующую волну, фронтом которой будет сфера.

  1. КВАЗИСТАЦИОНАРНЫЙ ТОК относительно медленно изменяющийся переменный ток, для мгновенных значений к-рого с достаточной точностью выполняются законы постоянных токов (прямая пропорциональность между током и напряжением - Ома закон, Кирхгофа правила и др.). Подобно постоянным токам, К. т. имеет одинаковую силу тока во всех сечениях неразветвлённой цепи. Однако при расчёте К. т. (в отличие от расчёта цепей постоянного тока) необходимо учитывать возникающую при изменениях тока эдс индукции. Индуктивности, ёмкости, сопротивления ветвей цепи К. т. могут считаться сосредоточенными параметрами. Для того чтобы данный переменный ток можно было считать К. т., необходимо выполнение условия квазистационарности (см. Квазистационарный процесс), к-рое для синусоидальных переменных токов сводится к малости геометрич. размеров электрической цепи по сравнению с длиной волны рассматриваемого тока. Токи промышленной частоты, как правило, можно рассматривать как К. т. (частоте 50 гц соответствует длина волны ~6000 км). Исключение составляют токи в линиях дальних передач, в к-рых условие квазистационарности вдоль линии не выполняется.

На графиках рис. 11.2. представлены зависимости заряда конденсатора от времени в случае незатухающих (а) и затухающих (б, в, г) колебаний. Характер затухающих колебаний меняется с увеличением сопротивления резистора R. Когда сопротивление превысит определённое критическое значение Rк, колебания в системе не возникают. Происходит монотонный апериодический разряд конденсатора (рис. 11.2.г.).