Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Газованя Динамика,реферат.docx
Скачиваний:
25
Добавлен:
27.09.2019
Размер:
110.42 Кб
Скачать
  • 2. Систематизация знаний в газодинамике.

Законами Газовая динамика широко пользуются во внешней и внутренней баллистике, при изучении таких явлений, как взрыв, горение, детонация, конденсация в движущемся потоке. Прикладная Газовая динамика, в которой обычно применяются упрощённые теоретические представления об осреднённых по поперечному сечению параметрах газового потока и основные закономерности движения, найденные экспериментальным путём, используется при расчёте компрессоров и турбин, сопел и диффузоров, ракетных двигателей, аэродинамических труб, эжекторов, газопроводов и многих др. технических устройств.

  Газодинамические исследования ведутся в тех же научных учреждениях, что и исследования по аэродинамике, а результаты их публикуются в тех же научных журналах и сборниках.

Свойство сжимаемости состоит в способности вещества изменять свой первоначальный объём под действием перепада давления или при изменении температуры. Поэтому сжимаемость становится существенной лишь при больших скоростях движения среды, соизмеримых со скоростью распространения звука в этой среде и превосходящих её, когда в среде возникают большие перепады давления (см. Бернулли уравнение) и большие градиенты температуры. Современная Газовая динамика изучает также течения газов при высоких температурах, сопровождающиеся химическими (диссоциация, горение и др. химические реакции) и физическими (ионизация, излучение) процессами. Изучение движения газов при таких условиях, когда газ нельзя считать сплошной средой, а необходимо рассматривать взаимодействие составляющих его молекул между собой и с твёрдыми телами, относится к областиаэродинамики разреженных газов, основанной на молекулярно-кинетической теории газов. Динамика сжимаемого газа при малых скоростях движения больших воздушных масс в атмосфере составляет основу динамической метеорологии.  Газовая динамика исторически возникла как дальнейшее развитие и обобщение аэродинамики, поэтому часто говорят о единой науке - аэрогазодинамике.

  Теоретическую основу Газовая динамика составляет применение основных законов механики и термодинамики к движущемуся объёму сжимаемого газа. Навье - Стокса уравнения, описывающие движение вязкого сжимаемого газа, были получены в 1-й половине 19 в. Немецкий учёный Б.Риман (1860), английский - У. Ранкин (1870), французский -А. Гюгоньо (1887) исследовали распространение в газе ударных волн  , которые возникают только в сжимаемых средах и движутся со скоростью, превышающей скорость распространения в них звуковых волн. Риман создал также основы теории неустановившихся движений газа, т. е. таких движений, когда параметры газового потока в каждой его точке изменяются с течением времени.

Уравнения газовой динамики. T. к. при теоретическое изучении задач Г. д. параметры газа могут испытывать разрывы на некоторых поверхностях внутри области течения, то исходные уравнения газовой динамики записываются в интегральной форме для конечных объёмов газа. Из этих интегральных соотношений в областях непрерывного движения следуют дифференциация уравнения Г. д. Если не учитывать вязкости и теплопроводности газа, то скорость газа  , его давление р и плотность   в точках области, где они непрерывны, должны быть связаны ур-ниями:

Первое уравнение - Эйлера уравнение гидродинамики - связывает ускорение жидкой частицы (т. е. объёма, состоящего из одних и тех же материальных точек, размеры которого малы по сравнению с характерным размером задачи) с внеш. массовой силой   и силой, приложенной к частице со стороны соседних частиц жидкости. Оно является обобщением 2-го закона Ньютона (закона сохранения кол-ва движения) применительно к движению жидкой частицы. Второе уравнение служит выражением закона сохранения массы (скорость относительного изменения плотности частицы равна - с обратным знаком - скорости относительного изменения объёма). Третье уравнение выражает закон сохранения энергии: изменение внутренней энергии U и кинетической энергии частицы газа происходит вследствие работы внеш. массовых и поверхностных сил и притока теплоты извне (q - приток теплоты к единице массы газа за единицу времени).