Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры по тер. меху..docx
Скачиваний:
18
Добавлен:
26.09.2019
Размер:
371.53 Кб
Скачать

5.Относительное движение. Абсолютная скорость и абсолютное ускорение.

6.Плоское движение твердого тела. Определение скорости и ускорения при плоском движении. (Формулы, по которым рассчитывать). Мгновенный центр скоростей. Мгновенный центр ускорений.Плоскопараллельное движение твердого тела – движение при котором каждая точка тела движется в плоскости параллельной некоторой неподвижной плоскости. Сечение тела одной из таких плоскостей есть плоская фигура, остающаяся в этой плоскости при движении тела. Функции называются уравнениями плоского движения твердого тела. Для характеристики вращательной части плоского движения твердого тела вокруг подвижной оси, проходящей через выбранный полюс, вводится понятие угловой скорости и углового ускорения . и , где - единичный вектор, направленный по оси вращения. Если угол поворота вокруг подвижной оси, проходящей через полюс, обозначить , то , а . Векторы и можно изображать в любых точках подвижной оси вращения, т.е. они являются свободными векторами. . Мгновенным центром скоростей называется точка плоской фигуры, скорость которой в данный момент времени равна нулю. Теорема. В каждый момент времени при плоском движении фигуры в ее плоскости при (непоступательное движение), имеется один единственный центр скоростей. Мгновенный центр скоростей это единственная точка плоской фигуры для данного момента времени. В другой момент времени мгновенным центром скоростей будет уже другая точка. . Скорости точек плоской фигуры определяются в данный момент так, как если бы движение фигуры было вращением вокруг мгновенного центра скоростей. Скорости точек плоской фигуры пропорциональны их расстояниям до мгновенного центра скоростей. Мгновенный центр ускорений – точка (Q) плоской фигуры, ускорение которой в данный момент времени равно нулю. Для его построения из точки А откладываем под углом к ускорению аА отрезок , при этом угол откладывается от ускорения в сторону, направления углового ускорения . Модули ускорений точек плоской фигуры пропорциональны расстояниям от этих точек до мгн.ц. ускорений, а векторы ускорений составляют с отрезками, соединяющими эти точки и м.ц.у. один и тот же угол : . Мгновенный центр скоростей Р и мгновенный центр ускорений Q являются различными точками плоской фигуры.

7 .Статика. Определение силы, момента. Аксиомы статики. Активные силы и реакции связей (их направление). Статикой называется раздел механики, в котором излагается общее учение о силах и изучается условия равновесия материальных тел, находящихся под действием сил. Величина, являющаяся количественной мерой механического взаимодействия материальных тел, называется в механике силой. Сила является величиной векторной. Ее действие на тело определяется: 1) численной величиной или модулем силы, 2) направлением силы, 3) точкой приложения силы. Моментом силы относительно центра называется величина, равная взятому с соответствующим знаком произведению модуля силы на длину плеча. Аксиомы статики. Аксиома 1. Если на свободное абсолютно твердое тело действуют две силы, то тело может находиться в равновесии тогда и только тогда, когда эти силы равны по модулю (F1 = F2) и направлены вдоль одной прямой в противоположные стороны . Аксиома 2. Действие данной системы, сил на абсолютно твердое тело не изменится, если к ней прибавить или о т нее отнять уравновешенную систему сил. Эта аксиома устанавливает, что две системы сил, отличающиеся на уравновешенную систему, эквивалентны друг другу. Следствие из 1-й и 2-й аксиом. Действие силы на абсолютно твердое тело не изменится, если перенести точку приложения силы вдоль ее линии действия в любую другую точку тела. Аксиома 3 (аксиома параллелограмма сил). Две силы, приложенные к телу в одной точке, имеют равнодействующею, приложенную в той же точке и изображаемую диагональю параллелограмма, построенного на этих силах, как на сторонах. Вектор , равный диагонали параллелограмма, построенного на векторах и, называется геометрической суммой векторов и : = + . Следовательно, аксиому 3 можно еще формулировать так: две силы, приложенные к телу в одной точке, имеют равнодействующую, равную геометрической (векторной) сумме этих сил и приложенную в той же точке. Аксиома 4. При всяком действии одного материального тела на другое имеет место такое же по величине, но противоположное по направлению противодействие. Закон о равенстве действия и противодействия является одним из основных законов механики. Аксиома 5 (принцип отвердевания). Равновесие изменяемого (деформируемого) тела, находящегося под действием данной системы сил, не нарушится, если тело считать отвердевшим (абсолютно твердым).Сила, с которой связь действует на рассматриваемое тело, называется реакцией связи. Реакция связи направлена в сторону, противоположную той, куда связь не дает перемещаться телу. Силы, не являющиеся реакциями связей, например сила тяжести, будем называть активными. Всякое несвободное тело можно рассматривать как свободное, если действие связей заменить их реакциями, приложенными к телу. Основные типы связей: а) опора на идеально гладкую поверхность – реакция поверхности направлена по нормали к ней; б) одна из соприкасающихся поверхностей является точкой (угол), реакция направлена по нормали к другой поверхности; в) нить – реакция направлена вдоль нити к точке подвеса; г) цилиндрический шарнир (шарнирно-неподвижная опора) – реакция может иметь любое направление в плоскости. При решении задач заменяется двумя взаимно перпендикулярными составляющими; д) цилиндрическая шарнирно-подвижная опора (шарнир на катках) – реакция направлена перпендикулярно опорной плоскости; е) сферический (шаровой) шарнир – реакция может иметь любое направление в пространстве. При решении задач заменяется тремя взаимно перпендикулярными составляющими; ж) невесомый стержень (обязательно невесомый) – реакция направлена вдоль стержня; з) "глухая" заделка (вмурованная балка) – возникает произвольно направленная реакция – сила и реактивный момент, также неизвестный по направлению.

8. Система сходящихся сил Сходящимися называются силы, линии действия которых пересекаются в одной точке. Равнодействующая сходящихся сил равна геометрической сумме этих сил и приложена в точке их пересечения . Равнодействующая может быть найдена геометрич. способом – построением силового (векторного) многоугольника или аналитич. способом, проектируя силы на оси координат. Проекции силы на оси координат (для плоской сист.): Fx=Fcos; Fy=Fcos=Fsin; проекция >0, если направление составляющей силы совпадает с направл. оси. Модуль силы: ; направляющие косинусы: разложение силы на составляющие: , где орт (единичный вектор) соответствующей оси.

Д ля пространственной системы: ,

Fx=Fcos; Fy=Fcos; Fz=Fcos; ; .

Проекции равнодействующей системы сходящихся сил на координатные оси равна алгебраическим суммам проекций этих сил на соответствующие оси: Rx=Fix; Ry=Fiy; Rz=Fiz; .

9.Плоская система сил. Условия равновесия. Плоская система сил – система сил, расположенных в одной плоскости. Система сил приводится к одной силе – главному вектору и к паре сил, момент которой равен главному моменту. Момент пары сил направлен перпендикулярно к плоскости, в которой лежат силы. Условия равновесия пл. сист. сил: векторное: . аналитич:

, или

где А,В,С – точки, не лежащие на одной прямой, или , ось "х" не перпендикулярна отрезку АВ.

Равновесие тел при наличии трения. Закон Кулона: максимальная сила сцепления пропорциональна нормальному давлению тела на плоскость

, fсц – коэффициент сцепления (зависит от материала, состояния поверхностей, определяется экспер-но). Направление силы сцепления противоположно направлению того движения, которое возникло бы при отсутствии сцепления. При скольжении тела по шероховатой поверхности к нему приложена сила трения скольжения. Ее направление противоположно скорости тела , f –коэффициент трения скольжения (определяется опытным путем). f<fсц. Реакция шероховатой (реальной) поверхности в отличии от идеально гладкой имеет две составляющие: нормальную реакцию и силу сцепления (или силу трения при движении). Угол сц–угол сцепления (тр – угол трения) tgсц=fсц (tgтр=f). Конус с вершиной в точке касания тел, образующая которого составляет угол сцепления (угол трения) с нормалью к поверхностям тела назыв. конусом сцепления (конус трения). Для того чтобы тело начало движение, необходимо (и достаточно), чтобы равнодействующая активных сил находилась вне конуса трения. Трение качения – сопротивление, возникающее при качении одного тела по поверхности другого. Причина его появления в деформации катка и плоскости в точке их соприкосновения и смещения нормальной реакции в сторону возможного движения. Мтр= fkN – момент трения качения, fk – коэффициент трения качения; имеет размерность длины.