Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика экзамен.docx
Скачиваний:
22
Добавлен:
26.09.2019
Размер:
610.26 Кб
Скачать

8. Дисперсия и разрешающая сила спектрального прибора.

О сновными характеристиками любого спектрального прибора, в том числе и дифракционной решетки, являются его дисперсия и разрешающая сила. От их величин зависит способ­ность прибора пространственно разделить лучи разных длин волн. Линейная дисперсия D определя­ется как отношение , где dl - расстоя­ние между спектральными линиями, а dλ – разность длин волн этих линий. Определение справедливо также для разности частот линий dν. Угловая диспер­сия , где dφ – разность углов между лучами, отличающимися на dλ или dν со­ответственно. На рис. 3.9 показаны два луча, идущие под углами φ и φ + dφ, и имеющие длины волн λ и λ + dλ, соответственно.

Для определения угловой дисперсии дифракционной ре­шетки продифференцируем условие главного максимума dsinφ = = mλ. Мы получим

dcosφ dφ = mdλ,

откуда следует . При малых углах cosφ≈1 и Q ≈ ≈m/d, т.е. чем выше порядок спектра и меньше период решетки, тем больше угловая дисперсия. Она не зависит от числа щелей в решетке и характеризует степень растянутости спектра в об­ласти данной длины волны.

Р азрешающая сила спектрального прибора R показывает, какие близкие спектральные линии λ1 и λ2 с разностью длин dλ = λ2 - λ1 можно визуально разделить в спектре. , где λ – средняя длина волны разрещаемых линий λ1 и λ2. На рис. 3.10 пунктиром представлены две близкие спектральные линии, а сплошной кривой показаны наблюдаемые результирующие ин­тенсивности. В случае а) обе линии воспринимаются как одна, в случае б) линии воспринимаются раздельно. Это происходит потому, что возможность визуального разделения линий зависит также от их ширины. Согласно критерию, предложенному анг­лийским физиком Д.Рэлеем, спектральные линии считаются разрешенными, если максимум одной из них совпадает с мини­мумом другой (рис. 3.10 б).

Разрешающая сила дифракционной решетки R пропор­циональна числу щелей N и порядку спектра m, т.е. R = Nm. Приравняв друг другу два выражения для разрешающей силы, мы получим условие разрешимости линий . Если , то спектральные ли­нии разрешаются, если , линии не разрешаются.

9.Поляризация света. Закон Малюса. Вращение плоскасти поляризации. Закон Фарадея.

Из теории Максвелла сле­дует, что свет представляет совокупность множества по­перечных электромагнитных волн: векторы напряженностей электрического Еi и магнитного Hi полей у каждой волны взаимно перпендику­лярны и колеблются перпенди­кулярно скорости υ рас­пространения волны

Свет представляет собой сово­купность световых волн, излучаемых множеством отдельных атомов, которые излучают световые волны независимо друг от друга, поэтому световые волны со всевозможными равновероят­ными колебаниями векторов Еi называется естественным (рис. 4.1 а). Свет, в котором существует преимущест­венная (но не единственная) ориентация колебаний векторов Еi для всех волн называется частично поляризованным (рис. 4.1 б). Степень поляризации света определяется выражением:

где Imax –интенсивность колебаний преобладающего направле­ния; Imin - интенсивность колебаний в направлении, перпендику­лярном преобладающему. Для естественного света (Imax = Imin) степень поляризации Р = 0. Различают три вида поляризации света: эллиптическую, круговую и плоскую (или линейную). С точки зрения математики колебания светового век­тора Ес в любой точке пространства можно представить резуль­татом сложения двух взаимно перпендикулярных линейно поля­ризованных колебаний векторов Ех и Еу (рис. 4.2), которые колеблются по законам

Е х = Е0хcos (ωt+1)

Еy = Е0ysin (ωt+2)

Уравнение траектории, которую описывает конец результирующего вектора Е при сложении взаимно перпендику­лярных гармонических колебаний одинаковой частоты имеет следующий вид:

г де Е0х и Е0у – амплитуды складываемых колебаний, 2 - 1 – разность фаз колебаний. При произвольном постоянном значе­нии разности фаз траектория, описываемая результирующим вектором Е является эллипсом (рис. 4.3 а), размеры которого зависят от амплитуд Е0х и Ескладываемых колебаний и разности их на­чальных фаз 2 - 1. Такой свет называется эллиптически поля­ризованным.

Если разность фаз 2 - 1 = (2m+1)π/2, где m= 0,±1,±2, …и амплитуды Е0х = Е0у , то траектория результирующего вектора Е представляет собой окружность (рис. 4.3 б), а свет

называется поляризованным по кругу (или циркулярно поляризованным):

При разности фаз 2 - 1 = mπ, где m = 0, ±1, ±2,… эллипс вырождается в отрезок прямой (рис. 4.3 в):

Еу = ±(Е /Е0х)Ех

Такой свет называется линейно поляризованным (плоско поляризованным).

Свет от естественных источников может приобрести час­тичную или полную поляризацию при взаимодействии с веще­ством. Поляризация света состоит в выделении из светового пучка колебаний определенного направления. Для этой цели ис­пользуют специальные устройства, называемые поляризато­рами.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]