Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры слепа.docx
Скачиваний:
19
Добавлен:
26.09.2019
Размер:
63.57 Кб
Скачать

15. Как определяется необходимость в ограничении величины токов короткого замыкания и какие существуют методы их ограничения.

Выбор электрических аппаратов и токоведущих частей электроустановок производят по условиям работы в нормальном режиме и проверяют на термическую и динамическую устойчивость при коротком замыкании.

При коротком замыкании ток в цепи значительно возрастает по сравнению с током нормального режима. В высоковольтных сетях токи короткого замыкания могут достигать таких величин, что подобрать установки, которые смогли бы выдержать электродинамические силы, возникающие вследствие протекания этих токов, не представляется возможным.

При проверке выбранных электрических аппаратов и токоведущих частей электроустановки на термическую и динамическую устойчивость при коротком замыкании (КЗ) необходимо правильно выбрать положение расчетной точки и расчетный вид КЗ. Расчетную точку КЗ для проверки выбирают так, чтобы через электрический аппарат или токоведущую часть электроустановки протекал наибольший ток КЗ. Расчетным видом КЗ, для проверки электрических аппаратов и токоведущих частей на динамическую и термическую устойчивость, является трехфазное КЗ. По трехфазному току КЗ производится так же проверка выключателей на отключающую способность, а в сетях напряжением 110 кВ и выше - дополнительно по однофазному току КЗ. При проверке на термическую стойкость проводников и аппаратов в цепях генераторного напряжения электростанций расчетным током короткого замыкания может быть двухфазное КЗ, если оно обуславливает больший нагрев проводников и аппаратов, чем при трехфазном КЗ. 

Для проверки электрических аппаратов и токоведущих частей на термическую устойчивость, а выключателей дополнительно на отключающую способность, необходимо знать расчетное время протекания тока КЗ, т.е. время через которое происходит отключение тока КЗ. Согласно время отключения тока КЗ   для проверки проводников и электрических аппаратов на термическую стойкость складывается из времени действия основной релейной защиты рассматриваемой цепи   и полного времени отключения выключателя 

В мощных электроустановках и питаемых ими электросетях токи короткого замыкания могут достигать столь больших величин, что электрооборудование электрических станций и подстанций, а также сечения кабелей электросети приходится выбирать не по условиям нормального режима, а исходя из устойчивости работы их при коротких замыканиях. Применение электрооборудования и кабелей, рассчитанных на большие токи короткого замыкания, приводит к значительному увеличению затрат на сооружение электроустановок и их сетей. В некоторых случаях токи короткого замыкания могут быть настолько велики, что вообще оказывается невозможным или весьма затруднительным выбор электрооборудования и кабелей, устойчивых при коротких замыканиях. Поэтому в мощных электроустановках применяют искусственные меры ограничения токов короткого замыкания, чем достигается возможность применения более дешевого электрооборудования: более легких типов электроаппаратов, шин и кабелей меньших сечений. Существуют несколько способов ограничения токов короткого замыкания. Выбор того или иного способа ограничения определяется местными условиями установки и должен быть подкреплен технико-экономическим расчетом. В общем случае ограничение тока короткого замыкания достигается увеличением сопротивления цепи короткого замыкания либо путем осуществления раздельной работы питающих агрегатов и линий электросети, либо путем включения последовательно в цепь специальных сопротивлений. Устройства предназначены для ограничения уровней токов к.з. и сохранения живучести электроэнергетической системы. В схемах питания мегаполисов эти проблемы особо актуальны в связи с высокой плотностью нагрузки, значением токов к.з., превышающих предельно коммутационные способности существующих выключателей.  Методы ограничения токов короткого замыкания:

  • установка токоограничивающих электрических реакторов;

  • распараллеливание электрических цепей, отключение секционных и шиносоединительных выключателей;

  • использование понижающих трансформаторов с расщеплённой обмоткой низкого напряжения;

  • отключающее оборудование — быстродействующие коммутационные аппараты с функцией ограничения тока короткого замыкания (плавкие предохранители и автоматические выключатели);

  • внедрение устройств релейной защиты.

Устройства ограничения токов к.з. можно разделить на две группы:

  • устройства ограничения уровня токов к.з. на сравнительно небольшую степень;

  • устройства глубокого ограничения токов к.з., обладающие высоким быстродействием и большим сопротивлением в режимах к.з.

К первым устройствам относятся стандартные токоограничивающие реакторы, включаемые в электрическую сеть последовательно, допускающие сравнительно небольшую степень токоограничения, обладающие сравнительно низкой стоимостью и нашедшие широкое практическое применение.  В последнее время большое значение приобретают быстродействующие устройства глубокого токоограничения, обладающие в нормативных режимах малым (в идеале нулевым) сопротивлением, а при к.з. – требуемым.  К этим устройствам относятся устройства глубокого токоограничения на базе силовой электроники (рис. 6), на базе быстродействующих коммутационных элементов взрывного действия (рис.7), на базе использования высокотемпературных сверхпроводников.  Устройство на базе силовой электроники состоит из последовательно включённых индуктивности и ёмкости равной величины. В нормальном режиме ключ разомкнут. Падение напряжения равно нулю. При КЗ тиристорный ключ замыкает емкость и индуктивность L ограничивает ток КЗ.  Устройство глубокого ограничения токов короткого замыкания, реализованное на основе магнитосвязанного реактора с быстродействующим коммутатором в его вторичной обмотке приведено на рис.7.  Специальный трансформатор (магнитосвязный реактор) с коммутационным элементом взрывного типа во вторичной обмотке включается последовательно в сеть и имеет в нормальном режиме малое сопротивление. Автоматическое повышение сопротивления при КЗ. Возможно глубокое токоограничение ударного и установившегося тока КЗ.  Основу токоограничителя составляет быстродействующий коммутационный элемент, состоящий из трех основных элементов:

  • быстродействующее разъединительное устройство;

  • плавкий предохранитель, включенный параллельно;

  • блок логических схем с трансформатором тока. В нормальном режиме ток протекает через медную шину, расположенную в патроне разъединителя. Ток в предохранителе ~0,1 % от этого тока.  При КЗ по сигналу блока логических схем при определенном значении тока пиротехническим составом рвется шина, после чего ток полностью переходит на плавкий предохранитель, что практически исключает коммутационные перенапряжения. Блок логических схем по сигналу РЗА даёт команду на замыкание контактов быстродействующего замыкателя, благодаря чему устройство возвращается в первоначальное состояние.  Элемент КЭ состоит из нормально замкнутого (1) и нормально разомкнутого (2) контактов. Количество элементов определяется условиями эксплуатации. За рубежом и в России проводятся многочисленные исследования создания токоограничителей на базе сверхпроводимости, созданы макеты и опытные образцы этих устройств, коммерческое использование которых по различным оценкам возможно на уровне 2015 г.