Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-91 частично.doc
Скачиваний:
7
Добавлен:
26.09.2019
Размер:
2.63 Mб
Скачать

Вопрос 27

Модель идеального газа. Основное уравнение идеального газа. Уравнение состояния идеального газа.

Идеальный газ — математическая модель газа, в которой предполагается, что потенциальной энергией взаимодействия молекулможно пренебречь по сравнению с их кинетической энергией. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями.

Модель широко применяется для решения задач термодинамики газов и задач аэрогазодинамики. Например, воздух при атмосферном давлении и комнатной температуре с большой точностью описывается данной моделью. В случае экстремальных температур илидавлений требуется применение более точной модели, например модели газа Ван-дер-Ваальса, в котором учитывается притяжение между молекулами.

1.Число молекул в газе велико: N >> 1, среднее расстояние между отдельными молекулами много больше их размеров (l >> a).

2Молекулы газа совершают неупорядоченное, хаотическое движение.

3.Движение отдельных молекул подчиняется законам классической механики. При этом молекулы рассматриваются как материальные точки, совершающие только поступательное движение. Величина потенциальной энергии взаимодействия в среднем мала по сравнению со средней кинетической энергией.

4.Все соударения молекул друг с другом и со стенками сосуда, в котором находится газ, являются абсолютно упругими (происходят без потери энергии). При ударе о стенку компонента импульса молекулы, перпендикулярная стенке, меняет знак (но не величину). Таким образом, в целом выполняются законы сохранения импульса и энергии для молекул газа.

Уравнение состояния идеального газа (иногда уравнение Клапейрона или уравнение Менделеева — Клапейрона) — формула, устанавливающая зависимость между давлением, молярным объёмом и абсолютной температурой идеального газа. Уравнение имеет вид:

где

  •  — давление,

  •  — молярный объём,

  •  — универсальная газовая постоянная

  •  — абсолютная температура,К.

Так как  , где   — количество вещества, а  , где   — масса,   — молярная масса, уравнение состояния можно записать:

Эта форма записи носит имя уравнения (закона) Менделеева — Клапейрона.

В случае постоянной массы газа уравнение можно записать в виде:

Последнее уравнение называют объединённым газовым законом. Из него получаются законы Бойля — Мариотта, Шарля и Гей-Люссака:

 — закон Бойля — Мариотта.

 — Закон Гей-Люссака.

 — закон Шарля (второй закон Гей-Люссака, 1808 г.)

А в форме пропорции   этот закон удобен для расчёта перевода газа из одного состояния в другое.

основного уравнения МКТ: P=(1/3)· n· mo· V2.

Вопрос 28

Молекулярно-кинетический смысл температуры.

Основное уравнение МКТ показывает, что давление прямо пропорционально произведению массы молекулы на средний квадрат скорости молекул и на концентрацию молекул. Оно получено теоретическим путем и не поддается прямой экспериментальной проверке, т.к. для этого надо научиться измерять все входящие в него микропараметры. Хотелось бы получить какое-нибудь следствие из этого уравнения, связывающее макропараметры, и проверить его на опыте. Преобразуем основное уравнение следующим образом:

В

оспользуемся соотношением между средней кинетической энергией поступательного движения молекулы и абсолютной температурой:

Р

ешая совместно, получим:

Итак, одну зависимость мы уже выявили: давление прямо пропорционально абсолютной температуре и при n = const.

Проще всего добиться постоянства концентрации, замкнув газ в герметичный сосуд. Тогда количество молекул и объем газа будут величинами постоянными, постоянным будет и их отношение, т.е. концентрация (n = N/V). Соответствующий закон был действительно открыт в 1787 году французским физиком Шарлем.

Попробуйте самостоятельно предсказать, пользуясь уравнением p = nkT, характер зависимости давления газа от его объема при постоянной температуре. Может быть, вам удастся предположить, как должен зависеть объем от абсолютной температуры при постоянном давлении?

О сновное уравнение МКТ позволяет с помощью известных макропараметров – давления и плотности газа – вычислить среднюю квадратичную скорость молекул.

42. Работа сил электростатического поля при перемещении в нем заряда.

Элементарная работа, совершаемая силой F при перемещении точечного электрического заряда из одной точки электростатического поля в другую на отрезке пути , по определению равна

где - угол между вектором силы F и направлением движения . Если работа совершается внешними силами, то dA0.

43. Циркуляция вектора напряженности электростатического поля. Потенциальный характер электростатического поля.

В случае, если в электростатическом поле точечного заряда Q из точки 1 в точку 2 вдоль какой-либо траектории (рис. 1) двигается другой точечный заряд Q0, то сила, которая приложена к заряду, совершает некоторую работу. Работа силы F на элементарном перемещении dl равна Так как dl/cosα=dr, то Работа при перемещении заряда Q0 из точки 1 в точку 2 (1) от траектории перемещения не зависит, а определяется только положениями начальной 1 и конечной 2 точек. Значит, электростатическое поле точечного заряда является потенциальным, а электростатические силы — консервативными Из формулы (1) видно, что работа, которая совершается при перемещении электрического заряда во внешнем электростатическом поле по произвольному замкнутому пути L, равна нулю, т.е. (2) Если в качестве заряда, которого перемещают в электростатическом поле, взять единичный точечный положительный заряд, то элементарная работа сил поля на пути dl равна Еdl = Eldl, где El = Ecosα — проекция вектора Е на направление элементарного переме¬щения. Тогда формулу (2) можно представить в виде (3) Интеграл называется циркуляцией вектора напряженности. Значит, циркуляция вектора напряженности электростатического поля вдоль любого замкнутого контура равна нулю. Силовое поле, которое обладает свойством (3), называется потенциальным. Из равенства нулю циркуляции вектора Е следует, что линии напряженности электростатического поля не могут быть замкнутыми, они обязательно начинаются и кончаются на зарядах (на положительных или отрицательных) или же идут в бесконечность. Формула (3) верна только для электростатического поля. В дальнейшем будет показано, что с случае поля движущихся зарядов условие (3) не верно (для него циркуляция вектора напряженности отлична от нуля).

Рис.1

44. Потенциал и разность потенциалов. Потенциал точечного заряда.

Потенциал электростатического поля скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду:

- энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]