Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на вопросы по физике.docx
Скачиваний:
17
Добавлен:
24.09.2019
Размер:
170.94 Кб
Скачать

47.Второе начало термодинамики.

Термодинамика – это наука о тепловых процессах, о превращении тепловой энергии. Для описания термодинамических процессов первого начала термодинамики недостаточно. Выражая общий закон сохранения и превращения энергии, первое начало не позволяет определить направление протекания процессов.

       Исторически второе начало термодинамики возникло из анализа работы тепловых двигателей. Рассмотрим схему теплового двигателя. От термостата с более высокой температурой Т1, называемого нагревателем, за цикл отнимается количество теплоты Q1, а термостату с более низкой температурой Т2, называемому холодильником, за цикл передается количество теплоты Q2 и совершается работа

       Чтобы термический коэффициент полезного действия теплового двигателя был  , должно быть выполнено условие  , т.е. тепловой двигатель должен иметь один источник теплоты, а это невозможно. Такой двигатель называется вечным двигателем второго рода.

       В 1824 г. Карно доказал, что для работы теплового двигателя необходимо не менее двух источников теплоты с различными температурами. Невозможность создания вечного двигателя второго рода подтверждается вторым началом термодинамики.

       Приведем некоторые формулировки второго начала термодинамики:

Невозможен процесс, единственным результатом которого является превращение всей теплоты, полученной от нагревателя в эквивалентную ей работу (формулировка Кельвина).

Невозможен вечный двигатель второго рода (формулировка Томпсона – Планка).

Невозможен процесс, единственным результатом которого является передача энергии в форме теплоты от холодного тела к горячему (формулировка Клаузиуса).

      при обратимом процессе имеет место равенство Клаузиуса:

при необратимом процессе имеет место неравенство Клаузиуса:

       Тогда для произвольного процесса,

       где знак равенства – для обратимого процесса; знак больше - для необратимого.

       Значит для замкнутой системы

      Это выражение – математическая запись второго начала термодинамики.

       Выражения и можно объединить:

      Энтропия замкнутой системы при любых происходивших в ней процессах не может убывать (или увеличивается, или остается неизменной).

       Первое и второе начала термодинамики в объединенной форме имеют вид:

 

.

48.Теорема Ненста.

Третье начало термодинамики (теорема Нернста) — физический принцип, определяющий поведение энтропии при приближениитемпературы к абсолютному нулю. Является одним из постулатов термодинамики, принимаемым на основе обобщения значительного количества экспериментальных данных.

Формулировка

Третье начало термодинамики может быть сформулировано так:

«Приращение энтропии при абсолютном нуле температуры стремится к конечному пределу, не зависящему от того, в каком равновесном состоянии находится система».

или

где   — любой термодинамический параметр.

Третье начало термодинамики относится только к равновесным состояниям.

Поскольку на основе второго начала термодинамики энтропию можно определить только с точностью до произвольной аддитивной постоянной (то есть, определяется не сама энтропия, а только её изменение):

,

третье начало термодинамики может быть использовано для точного определения энтропии. При этом энтропию равновесной системы при абсолютном нуле температурысчитают равной нулю.

Третье начало термодинамики позволяет находить абсолютное значение энтропии, что нельзя сделать в рамках классической термодинамики (на основе первого и второго начал термодинамики). В классической термодинамике энтропия может быть определена лишь с точностью до произвольной аддитивной постоянной  , что не мешает термодинамическим исследованиям, так как реально измеряется разность энтропий   в различных состояниях. Согласно третьему началу термодинамики, при   значение  .

В 1911 году Макс Планк сформулировал третье начало термодинамики, как условие обращения в нуль энтропии всех тел при стремлении температуры к абсолютному нулю:  . Отсюда  , что даёт возможность определять абсолютное значения энтропии и других термодинамических потенциалов. Формулировка Планка соответствует определению энтропии в статистической физике через термодинамическую вероятность   состояния системы  . При абсолютном нуле температуры система находится в основном квантово-механическом состоянии. Если оно невырожденно, то   (состояние реализуется единственным микрораспределением) и энтропия   при   равна нулю. В действительности при всех измерениях стремление энтропии к нулю начинает проявляться значительно раньше, чем могут стать существенными дискретность квантовых уровней макроскопической системы и влияние квантового вырождения.

Недостижимость абсолютного нуля температур

Из третьего начала термодинамики следует, что абсолютного нуля температуры нельзя достичь ни в каком конечном процессе, связанном с изменением энтропии, к нему можно лишь асимптотически приближаться, поэтому третье начало термодинамики иногда формулируют как принцип недостижимости абсолютного нуля температуры.