Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тема 7 1-10 (нет 5,6,7).docx
Скачиваний:
14
Добавлен:
22.09.2019
Размер:
497.34 Кб
Скачать
  1. Распределение пластового давления при притоке жидкости из однородного бесконечного пласта к точечному стоку.

ПЛАСТОВОЕ ДАВЛЕНИЕ— давление, которое пластовые флюиды оказывают на вмещающие их породы.

Пластовое давление — важнейший параметр, характеризующий энергию нефтегазоносных и водоносных пластов. В формировании пластового давления участвуют гидростатическое давление, избыточное давление залежей нефти или газа (архимедова сила), давление, возникающее в результате изменения объёма резервуара (порового или трещинного пространства), а также за счёт расширения (или сжатия) флюидов и изменения их массы. Различают начальное (до вскрытия подземного резервуара или не нарушенное техногенными процессами) и текущее (динамическое) пластовое давление

Пластовое давление изменяется как по площади распространения пласта, так и по глубине нефтяных и газовых залежей и по мощности водоносных горизонтов, увеличиваясь с возрастанием её пропорционально плотности подземного флюида. Сопоставления пластового давления относят к какой-либо одной плоскости сравнения (уровень моря, первоначальное положение водонефтяного контакта) — т.н. приведённое пластовое давление. При эксплуатации скважин в Призабойной зоне образуется область пониженного пластового давления. Измеряется пластовое давление глубинным манометром или рассчитывается исходя из отметок пъезометрических уровней пластовых флюидов в скважине или другой горной выработке при статическом состоянии. Точность измерения пластового давления глубинным манометром даёт до 1% ошибок, расчётный способ при благоприятных условиях в газовых и водяных залежах обеспечивает значительно большую точность (0,01-0,02%). Достоверность инструментального измерения зависит от его точности и от того, насколько давление в скважине соответствует пластовому, для чего необходима хорошая гидродинамическая сообщаемость скважины с пластом. Наиболее благоприятны для измерения пластового давления фонтанирующие скважины, в случае слабых притоков флюидов требуется большее время для восстановления пластового давления.

В процессе разработки залежей углеводородов пластовое давление снижается, что приводит к уменьшению дебитов скважин, изменениям физико-химических свойств флюидов, усложняет их добычу, увеличивает потери ценных компонентов. Поэтому разработку и эксплуатацию залежей ведут с поддержанием пластового давления.В зоне нагнетания формируется повышенное пластовое давление. По результатам измерений пластового давления строят графики его изменения. Анализ этих графиков позволяет судить о процессах, происходящих в залежи, и регулировать её разработку и эксплуатацию.

  1. Метод суперпозиции.

Метод суперпозиции состоит в том, что изменение пластового давления, вызванное воздействием какого - либо участка скважины, накладывается на изменение давлений, вызванные в пласте работой других участков.

Добавление стоков проводятся до тех пор, пока увеличение длины горизонтального ствола дает рентабельный прирост дебита.

При разработке нефтяных и газовых месторождений (НГМ) возникает два вида задач:

1. Задаётся дебит скважин и требуется определить необходимое для этого дебита забойное давление и, кроме того, давление в любой точке пласта. В данном случае величина дебита определяется значением предельной для имеющихся коллекторов депрессией, при которой ещё не наступает их разрушение, или прочностными характеристиками скважинного оборудования, или физическим смыслом. Последнее означает, например, невозможность установления нулевого или отрицательного забойного давления.

2. Задаётся забойное давление и требуется определить дебит. Последний вид условия встречается наиболее часто в практике разработки НГМ. Величина забойного давления определяется условиями эксплуатации. Например, давление должно быть больше давления насыщения для предотвращения дегазации нефти в пласте или выпадения конденсата при разработке газоконденсатных месторождений, что снижает продуктивные свойства скважин. Наконец, если возможен вынос песка из пласта на забой скважины, то скорость фильтрации на стенке скважины должна быть меньше некоторой предельной величины.

Замечено, что при эксплуатации группы скважин в одинаковых условиях, т.е. с одинаковым забойным давлением, дебит всего месторождения растёт медленнее увеличения числа новых скважин с теми же забойными условиями (рис.4.1). Увеличение дебита при этом требует понижения забойного давления.

Для решения поставленных задач решим задачу плоской интерференции (наложения) скважин. Предположим, что пласт - неограниченный, горизонтальный, имеет постоянную мощность и непроницаемые подошву и кровлю. Пласт вскрыт множеством совершенных скважин и заполнен однородной жидкостью или газом. Движение жидкости - установившееся, подчиняется закону Дарси и является плоским. Плоское движение означает, что течение происходит в плоскостях, параллельных между собой и картина движения во всех плоскостях идентична. В связи с этим разбирается течение в одной из этих плоскостей - в основной плоскости течения.

Решение задач будем строить на принципе суперпозиции (наложения) потоков. Основанный на этом принципе метод суперпозиции заключается в следующем.

Схема скоростей фильтрации в точке М при работе источников и стоков на неограниченной плоскости (а) и результирующий вектор скорости фильтрации в точке М (б)

При совместном действии в пласте нескольких стоков (эксплуатационных скважин) или источников (нагнетательных скважин) потенциальная функция, определяемая каждым стоком (источником), вычисляется по формуле для единственного стока (источника). Потенциальная функция, обусловленная всеми стоками (источниками), вычисляется путём алгебраического сложения этих независимых друг от друга значений потенциальной функции. Суммарная скорость фильтрации определяется как векторная сумма скоростей фильтрации, вызванная работой каждой скважины (рис.4.2b).

Пусть в неограниченном пласте действует n стоков с положительным массовым дебитом G и источников с отрицательным дебитом (рис. 4.2a).. Поток в окрестности каждой скважины в этом случае плоскорадиален и потенциал

4.1

где i - номер скважины; ri - расстояние между некоторой точкой пласта М и центром скважины под номером i.

Пользуясь методом суперпозиции, определим потенциал сложного потока

4.2

где

Зависимость (4.2) физически означает, что фильтрационные потоки от работы каждого источника-стока накладываются друг на друга. Т.к. пласт предполагается неограниченным, то потенциал на бесконечности равен бесконечности. В центрах стоков-источников (ri=0) потенциал также равен бесконечности.

Если жидкость несжимаема, то вместо массовых дебитов можно использовать объёмные дебиты Q в зависимости (4.2).

Для определения уравнений эквипотенциальных поверхностей (изобар) следует иметь в виду, что во всех точках этих кривых значение потенциала (давления) должно оставаться неизменным. Т.о. приравнивая (4.2) к некоторой постоянной получим

4.3

где П - знак произведения; С1 - постоянная.

Если дебиты всех скважин равны по величине, то

4.4

Линии тока образуют семейство кривых, ортогональных изобарам.

Метод суперпозиции можно использовать не только в бесконечных пластах, но и в пластах, имеющих контур питания или непроницаемую границу произвольной формы. В этом случае для выполнения тех или иных условий на границах вводятся фиктивные стоки или источники за пределами пласта. Фиктивные скважины в совокупности с реальными обеспечивают необходимые условия на границах и задача сводится к рассмотрению одновременной работы реальных и фиктивных скважин в неограниченном пласте. Данный метод называется методом отображения источников и стоков.

  1. Оценка дебитов при однорядной системе размещения скважин.

  2. Оценка дебитов для элемента пятиточечной системы разработки.

  3. Оценка дебитов для элемента семиточечной системы разработки.

  1. Теория Баклея-Леверетта. Смешанное вытеснение нефти водой

Модель поршневого вытеснения. Предполагается движущийся в пласте вертикальный фронт (границы), впереди которого нефтенасыщенность равна начальной ( ), а позади остается промытая зона с остаточной нефтенасыщенностью . На рисунке 19 схематически показан профиль насыщенности при фиксированном положении фронта . Перед фронтом фильтруется только нефть, а позади — только вода.

Р исунок 19 —Профиль насыщенности при фиксированном положении фронта .

1 — водой; 2 — нефтью

В соответствии с этой моделью полное обводнение продукции скважин должно произойти мгновенно в момент подхода фронта вытеснения к скважинам.

Модель непоршневого вытеснения (рисунок 20). По схеме Бэкли - Леверетта предполагается в пласте движущийся фронт вытеснения. Скачок нефтенасыщенности на нем значительно меньше, чем при поршневом вытеснении. Перед фронтом вытеснения движется только нефть, позади него — одновременно нефть и вода со скоростями, пропорциональными соответствующим фазовым проницаемостям. Причем по мере продвижения фронта вытеснения скорости изменяются не только в зависимости от насыщенности в пласте, но и во времени. В момент подхода фронта к скважине происходит мгновенное обводнение до некоторого значения, соответствующего скачку нефтенасыщенности на фронте , а затем обводненность медленно нарастает.

Р исунок 20 — Модель непоршневого вытеснения

Модель Бакли – Леверетта описывает процессы разработки нефтяных месторождений при непоршневом вытеснении нефти водой. Так как вытеснение не поршневое, то при фильтрации флюидов образуется зона двухфазной фильтрации – нефть + вода, которая через определённое время (время безводного периода) достигнет забоя добывающих скважин и, при дальнейшей эксплуатации скважин получаем совместный приток нефть + вода, при чём доля воды будет всё время увеличиваться. Эксплуатация ведётся до тех пор, пока продукция полностью не обводниться, либо до тех пор, пока дебит добываемой нефти остаётся рентабельным.

Ф ункция Бакли – Леверетта f(σ) зависит от водонасыщенности σ, определяется следующим образом:

-

Относительная проницаемость воды и нефти,

μ0 = μвн

Функция f(σ) строится индивидуально для каждого типа коллектора (песчаников, алевролитов, известняков)

Рисунок 41 — График зависимости f(σ) от σ

Рисунок 41 — График зависимости f `(σ) от σ

σф – точка насыщенности на фронте вытеснения

σсв ≤ σф ≤ σ*

σ*– предельное значение коэффициента водонасыщенности при котором нефть перестаёт двигаться.

Если выполняются условия t = T; Xф(Т) = L, то фронт вытеснения доходит до галереи.

Время выработки чисто нефтяной зоны (Т) определяется по формуле:

B, h, L – ширина высота и длинна пласта соответственно

m – коэффициент пористости

q - количество поступившей в пласт жидкости

f `(σф) – производная функции Бакли – Леверетта в точке σф, которая определяется по формуле:

Коэффициент извлечения нефти в безводный период равен:

А при условии что t = T; Xф(Т) = L коэффициент извлечения нефти в безводный период равен:

Итак, при поршневом вытеснении нефти посредством функции Бакли – Леверетта определяются время безводного периуда и текущего после обводнения продукции