Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
полубилеты рэс.docx
Скачиваний:
27
Добавлен:
21.09.2019
Размер:
405 Кб
Скачать

8 Вопрос: классификация и параметры резисторов

Резисторы являются элементами электронной аппаратуры и могут применяться как дискретные компоненты или как составные части интегральных микросхем. Дискретные резисторы классифицируются по назначению, виду ВАХ, по способу защиты и по способу монтажа, характеру изменения сопротивления, технологии изготовления.[2]

По назначению:

  • резисторы общего назначения

  • резисторы специального назначения

    • высокоомные (сопротивления от десятка МОм до единиц ТОм, рабочие напряжения 100..400 В)

    • высоковольтные (рабочее напряжения — десятки кВ)

    • высокочастотные (имеют малые собственные индуктивности и ёмкости, рабочие частоты до сотен МГц)

    • прецизионные и сверхпрецизионные (повышенная точность, допуск 0,001 — 1 %)

По способу защиты:

  • изолированные

  • неизолированные

  • вакуумные

  • герметизированные

По способу монтажа:

  • для печатного

  • для навесного

  • для микросхем и микромодулей

По виду вольт-амперной характеристики:

  • линейные резисторы

  • нелинейные резисторы

    • варисторы — сопротивление зависит от приложенного напряжения

    • терморезисторы — сопротивление зависит от температуры

    • фоторезисторы — сопротивление зависит от освещённости

    • тензорезисторы — сопротивление зависит от деформации резистора

    • магниторезисторы — сопротивление зависит от величины магнитного поля

По характеру изменения сопротивления:

  • постоянные резисторы

  • переменные регулировочные резисторы

  • переменные подстроечные резисторы

По технологии изготовления[источник не указан 1039 дней]:

  • Проволочные резисторы. Представляют собой кусок проволоки с высоким удельным сопротивлением, намотанный на какой-либо каркас. Могут иметь значительную паразитную индуктивность. Высокоомные малогабаритные проволочные резисторы иногда изготавливают из микропровода.

  • Плёночные металлические резисторы. Представляют собой тонкую плёнку металла с высоким удельным сопротивлением, напылённую на керамический сердечник, на концы сердечника надеты металлические колпачки с проволочными выводами. Иногда, для повышения сопротивления, в плёнке прорезается винтовая канавка. Это наиболее распространённый тип резисторов.

  • Металлофольговые резисторы. В качестве резистивного материала используется тонкая металлическая лента.

  • Угольные резисторы. Бывают плёночными и объёмными. Используют высокое удельное сопротивление графита.

  • Интегральный резистор. Используется сопротивление слаболегированного полупроводника. Эти резисторы могут иметь большую нелинейность вольт-амперной характеристики. В основном используются в составе интегральных микросхем, где применить другие типы резисторов невозможно или не технологично.

9 Вопрос: классификация и параметры конденсаторов Основные параметры Ёмкость

Основной характеристикой конденсатора является его ёмкость, характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = CU). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до тысяч микрофарад. Однако существуют конденсаторы (ионисторы) с ёмкостью до десятков фарад.

Ёмкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью S каждая, расположенных на расстоянии d друг от друга, в системе СИвыражается формулой:  , где   — относительная диэлектрическая проницаемость среды, заполняющей пространство между пластинами (в вакууме равна единице),  — электрическая постоянная, численно равная 8,854187817·10 -12 Ф/м (эта формула справедлива, лишь когда d много меньше линейных размеров пластин).

Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареипараллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.

 или 

Если у всех параллельно соединённых конденсаторов расстояние между обкладками и свойства диэлектрика одинаковы, то эти конденсаторы можно представить как один большой конденсатор, разделённый на фрагменты меньшей площади.

При последовательном соединении конденсаторов заряды всех конденсаторов одинаковы, так как от источника питания они поступают только на внешние электроды, а на внутренних электродах они получаются только за счёт разделения зарядов, ранее нейтрализовавших друг друга. Общая ёмкость батареи последовательно соединённых конденсаторов равна

 или 

Эта ёмкость всегда меньше минимальной ёмкости конденсатора, входящего в батарею. Однако при последовательном соединении уменьшается возможность пробояконденсаторов, так как на каждый конденсатор приходится лишь часть разницы потенциалов источника напряжения.

Если площадь обкладок всех конденсаторов, соединённых последовательно, одинакова, то эти конденсаторы можно представить в виде одного большого конденсатора, между обкладками которого находится стопка из пластин диэлектрика всех составляющих его конденсаторов.