Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
modul_1.doc
Скачиваний:
5
Добавлен:
28.08.2019
Размер:
531.97 Кб
Скачать

1.4. Уточнение корней методом касательных.

Пусть корень уравнения f (x) = 0 отделен на отрезке . Необходимым условием сходимости метода является то, что производные и непрерывны и сохраняют постоянные знаки.

Алгоритм приближенного вычисления корня методом касательных.

Исходные данные:

f (x) – функция;

f(x) – производная заданной функции f (x);

ε – требуемая точность;

x0 – начальное приближение.

Результат: xпр – приближенный корень уравнения f (x) = 0.

Метод решения:

Рассмотрим случай, когда , т.е. и имеют одинаковые знаки. Тогда возможны два случая построения кривой на отрезке (рис 8).

Проведем касательную к кривой y =f (x) в точке В0(b; f(b)). В курсе алгебры выводится уравнение касательной.

Уравнение касательной в точке В0 имеет вид . В качестве очередного приближения к корню уравнения берем точку пересечения касательной с осью Оx. Полагая y = 0, найдем . Теперь . Применяя метод еще раз для отрезка , получим .

Получаем рекуррентную формулу вычисления приближений к корню:

(3)

Рис. 8. Геометрическая интерпретация метода касательных для случая .

Обратим внимание, что в этом случае в качестве начального приближения к корню выбираем точку x0 = b. Приближение к коню происходит с правой стороны, поэтому получаем приближенное значение корня с избытком.

Пусть теперь , т.е. и имеют разные знаки. Тогда также возможны два случая построения кривой на отрезке (рис 9).

A0

B0

Рис. 9. Геометрическая интерпретация метода касательных для случая .

Если снова провести касательную к кривой в точке В0, то она пересечет ось Ох в точке не принадлежащей отрезку . Поэтому проведем касательную в точке . Ее уравнение . Находим x1, полагая y = 0: . Корень . Применяя метод еще раз для отрезка , получим .

Получаем рекуррентную формулу вычисления приближений к корню, аналогичную первому случаю:

В данном случае в качестве начального приближения к корню выбираем точку x0 = a. Приближение к коню происходит с левой стороны, поэтому находим приближенное значение корня с недостатком.

Заметим, что вычислительные формулы метода отличаются друг от друга только выбором начального приближения: в первом случае за x0 принимаем конец b отрезка, во втором – конец a.

Убедитесь сами, что при выборе начального приближения корня можно руководствоваться правилом: за исходную точку следует выбрать тот конец отрезка , в котором знак функции совпадает со знаком второй производной (см. рисунки 8,9).

Условие окончания вычислительного процесса: , где ε - заданная точность. Тогда xпр = xn+1 с точностью ε.

1.5. Уточнение корней методом хорд.

Пусть на отрезке функция непрерывна, принимает на концах отрезка значение разных знаков, а производная сохраняет знак. В зависимости от знака второй производной возможны следующие случаи расположения кривых (рис. 10).

Рис. 10. Возможные случаи расположения кривых.

Алгоритм приближенного вычисления корня методом хорд.

Исходные данные:

f (x) – функция;

ε – требуемая точность;

x0 – начальное приближение.

Результат: xпр – приближенный корень уравнения f (x) = 0.

Метод решения:

Рассмотрим случай, когда и имеют одинаковые знаки (рис. 11).

Рис. 11. Геометрическая интерпретация метода хорд для случая .

График функции проходит через точки и . Искомый корень уравнения (точка x*) нам неизвестен, вместо него возьмет точку х1 пересечения хорды А0В0 с осью абсцисс. Это и будет приближенное значение корня.

В аналитической геометрии выводится формула, задающая уравнение прямой, проходящей через две точки с координатами 1; у1) и 2; у2): .

Тогда уравнение хорды А0В0 запишется в виде: .

Найдем значение х = х1, для которого у = 0: . Теперь корень находится на отрезке . Применим метод хорд к этому отрезку. Проведем хорду, соединяющую точки и , и найдем х2 - точку пересечения хорды А1В0 с осью Ох: .

Продолжая этот процесс, находим: . Получаем рекуррентную формулу вычисления приближений к корню .

В этом случае конец b отрезка остается неподвижным, а конец a перемещается.

Таким образом, получаем расчетные формулы метода хорд:

; . (4)

Вычисления очередных приближений к точному корню уравнения продолжается до тех пор, пока не достигнем заданной точности, т.е. должно выполняться условие: , где - заданная точность.

Теперь рассмотрим случай, когда первая и вторая производные имеют разные знаки, т.е. (рис. 12).

Р ис. 12. Геометрическая интерпретация метода хорд для случая .

Соединим точки и хордой А0В0. Точку пересечения хорды с осью Ох будем считать первым приближение корня. В этом случае неподвижным концом отрезка будет являться конец а.

Уравнение хорды А0В0: . Отсюда найдем , полагая y = 0: . Теперь корень уравнения . Применяя метод хорд к этому отрезку, получим . Продолжая и т.д., получим .

Расчетные формулы метода:

, . (5)

Условие окончания вычислений: . Тогда хпр = xn+1 с точностью .

Итак, если приближенное значение корня находят по формуле (4), если , то по формуле (5).

Практический выбор той или иной формулы осуществляется, пользуясь следующим правилом: неподвижным концом отрезка является тот, для которого знак функции совпадает со знаком второй производной.

Пример 4. Проиллюстрировать действие этого правила на уравнении , если отрезок изоляции корня [2;3].

Решение. Здесь .

; . Вторая производная в этом примере положительна на отрезке изоляции корня [2;3]: , , т.е. . Таким образом, при решении данного уравнения методом хорд для уточнения корня выбираем формулы (4).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]