Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
14,16,19.docx
Скачиваний:
1
Добавлен:
06.08.2019
Размер:
35.34 Кб
Скачать

То что нашла в инете.

Одной из важнейших характеристик звезды является ее абсолютная величина (не имеющая, конечно, никакого отношения к геометрическим размерам). Она характеризует реальную светимость звезды. 

Как опытный сталевар по цвету легко определяет температуру стали, так и астроном, пользуясь законом Вина, без труда по цвету звезды определит ее температуру. Звезды красного цвета (М - в Гарвардской классификации) имеют температуру поверхности около 4000 К. Желтое Солнце нагрето уже примерно до 6000 К, а горячие звезды с температурами больше 10 тысяч К видятся нам бело-голубыми. Температура звезд  спектрального класса 0 достигают 40 000-50 000 К. Таким образом, спектральный класс звезды, или ее цвет, характеризует сразу же и ее температуру.   Очень важными характеристиками звезд являются их радиус и масса. Зная температуру и светимость звезды, можно без труда определить ее радиус.      гораздо хуже обстоит дело с определением массы звезды. Хорошо, если звезда имеет компаньона, образуя двойную систему, и известны большая полуось орбиты и период обращения. Тогда можно использовать третий закон Кеплера и найти суммарную массу двух звезд. Если к тому же известно отношение орбитальных скоростей, можно определить массу каждой звезды. Но для тесных пар этого сделать уже нельзя.   Совсем плохо дело обстоит в случае одиночных звезд. Фактически сегодня астрономия не располагает методом независимого определения массы одиночной звезды. Сейчас астрономы пришли к следующему молчаливому соглашению: на главной последовательности звезды одинакового спектрального класса имеют равную массу. Существующие здесь неопределенности ограничивают в известной мере полноту наших знаний.

                         

16.Какие состояния вещества во Вселенной вы знаете? Дайте краткую характеристику каждого состояния.

Состояния вещества во Вселенной.

В случае, когда имеется система, части которой образованы одним и тем же веществом, находящимся в разных состояниях, то переход этого вещества через границу раздела не будет сопровождаться протеканием химических реакций, но при этом состояние вещества может изменяться.

     Состояние вещества связано с условиями, в которых оно находится. Одно и тоже вещество в различных интервалах температур и давлений может находиться в состояниях, отличающихся друг от друга по своим физическим, в первую очередь механическим свойствам. Эти состояния одного и того же вещества называются агрегатными состояниями. Примерами агрегатных состояний окиси водорода являются: лед, вода и водяной пар. Выделяют три основных агрегатных состояния: твердоежидкое и газообразное.

     Четвертым основным агрегатным состоянием вещества считается плазма. Так называют сильно ионизированный газ с высокой относительной концентрацией заряженных частиц, который в целом электрически нейтрален. Отметим только, что плазма является самым распространённым состоянием вещества во Вселенной, так как из неё состоит большинство звезд. Примером низкотемпературной плазмы, наблюдаемой в земных условиях, является пламя, представляющее собой сильно разогретый, частично ионизированный газ, возникающий в процессе горения.

     Кроме плазмы во Вселенной встречаются такие специфические состояния вещества как нейтронная жидкость (из неё состоят нейтронные звезды) и вырожденная плазма (состоящая из полностью ионизированных ядер и электронов). Эти состояния встречаются при сверхвысоких давлениях и температурах.

     Твердое, жидкое и газообразное состояния веществ различаются, прежде всего, подвижностью атомов и молекул, из которых состоят эти вещества. В газах и жидкостях частицы совершают хаотическое поступательное движение, а в твердых веществах - колебательное движение вокруг положения равновесия. Различие между газами и жидкостями заключается в том, что в жидкостях расстояние между молекулами сравнимо с их размерами, и поэтому потенциальная энергия взаимодействия молекул сравнима по величине с энергией их теплового движения. Это приводит к тому, что тепловое движение молекул жидкости затруднено по сравнению с молекулами газа. Потенциальной энергии взаимодействия молекул жидкости недостаточно для сохранения устойчивой межмолекулярной структуры, как это наблюдается для твердых тел. Поэтому в жидкостях, в отличие от твердых кристаллических тел, в которых существует дальний порядок, наблюдается только некоторое упорядочение положения близлежащих частиц, то есть ближний порядок. По этой причине жидкость легко принимает форму сосуда, предоставленного ей. Это отличает её от твердых кристаллических тел, в которых существует упорядоченная межатомная структура - кристаллическая решетка.

     Среди твердых тел существует особый класс тел - аморфные тела, занимающие промежуточное положение между кристаллическими телами и жидкостями. Для них характерно долговременное сохранение формы, но при этом их атомы не образуют упорядоченную кристаллическую решетку.

     Среди жидкостей так же выделяется особый класс - жидкие кристаллы, механические свойства которых близки к свойствам жидкости, но при этом для них, так же как и для твердых кристаллических тел, характерно наличие анизотропии свойств. Такое состояние возможно у веществ с большими протяжёнными молекулами, например у органических соединений. Молекулы жидких кристаллов могут достаточно легко совершать поступательные перемещения, сохраняя при этом свою ориентацию в пространстве. Анизотропия жидких кристаллов особенно проявляется в их оптических свойствах, что позволяет использовать их в устройствах формирования изображения.

     Отметим, что одному и тому же агрегатному состоянию могут соответствовать несколько различных по своим свойствам состояний одного и того же вещества. Примерами этого являются различные модификации кристаллической решетки у твердых тел, отличающиеся симметрией, или состояния жидкого гелия - He I и He II, первое из которых обладает вязкостью, а второе - сверхтекучее.

Сверхпроводимость- отсутствие сопротивления(жидкий гелий при 4 градусах по Кельвину)

Сверхтекучесть- отсутствие трения(жидкий гелий < 4 градусов по Кельвину).