Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пример оформления ЭММ.doc
Скачиваний:
8
Добавлен:
07.07.2019
Размер:
172.54 Кб
Скачать

1. Задача об оптимальном использовании ресурсов при производственном планировании. Общий смысл задач этого класса сводится к следующему:

Предприятие выпускает n различных изделий. Для их производства требуется m различных видов ресурсов (сырья, материалов, рабочего времени и т.п.). Ресурсы ограничены, их запасы в планируемый период составляют, соответственно, b1, b2,..., bm условных единиц.

Известны также технологические коэффициенты aij, которые показывают, сколько единиц i-го ресурса требуется для производства единицы изделия j-го вида (   ).

Прибыль, получаемая предприятием при реализации изделия j-го вида, равна cj. В планируемом периоде значения величин aij, bi и cj остаются постоянными. Требуется составить такой план выпуска продукции, при реализации которого прибыль предприятия была бы наибольшей.

Далее приведем простой пример задачи такого класса.

Компания специализируется на выпуске хоккейных клюшек и наборов шахмат. Каждая клюшка приносит компании прибыль в размере $2, а каждый шахматный набор - в размере $4. На изготовление одной клюшки требуется четыре часа работы на участке A и два часа работы на участке B. Шахматный набор изготавливается с затратами шести часов на участке A, шести часов на участке B и одного часа на участке C. Доступная производственная мощность участка A составляет 120 часов в день, участка В - 72 часа и участка С - 10 часов.

Сколько клюшек и шахматных наборов должна выпускать компания ежедневно, чтобы получать максимальную прибыль?

Условия задач указанного класса часто представляют в табличной форме, что приведено в виде таблицы 1.

Таблица 1 - Исходные данные задачи об использовании производственных ресурсов

Производственные участки

Затраты времени на единицу продукции, (час)

Доступный фонд времени, (час)

Клюшки

Наборы шахмат

А

4

6

120

В

2

6

72

С

-

1

10

Прибыль на единицу продукции, ($)

2

4

По данному условию сформулируем задачу линейного программирования.

Обозначим: x1 - количество выпускаемых ежедневно хоккейных клюшек, x2 - количество выпускаемых ежедневно шахматных наборов.

Формулировка ЗЛП (задачи линейного программирования):

= 2x1 + 4x2 → max; (4)

 

4x1 + 6x2 ≤ 120, 2x1 + 6x2 ≤ 72, x2 ≤ 10;

 

x1 ≥ 0,   x2 ≥ 0.

 

Подчеркнем, что каждое неравенство в системе функциональных ограничений соответствует в данном случае тому или иному производственному участку, а именно: первое - участку А, второе - участку В, третье - участку С.

2. Задача о смесях (планирование состава продукции). К группе задач о смесях относят задачи по отысканию наиболее дешевого набора из определенных исходных материалов, обеспечивающих получение смеси с заданными свойствами. Иными словами, получаемые смеси должны иметь в своем составе m различных компонентов в определенных количествах, а сами компоненты являются составными частями n исходных материалов.

3. Транспортная задача. Под транспортной задачей понимают целый ряд задач, имеющих определенную специфическую структуру. Наиболее простыми транспортными задачами являются задачи о перевозках некоторого продукта из пунктов отправления в пункты назначения при минимальных затратах на перевозку.

Важную роль в линейном программировании имеет понятие двойственности. Теория математического линейного программирования позволяет не только получать оптимальные планы с помощью эффективных вычислительных процедур, но и делать ряд экономически содержательных выводов, основанных на свойствах задачи, которая является двойственной по отношению к исходной ЗЛП.

Пусть в качестве исходной дана задача:

= c1x1 + c2x2 + ... + cnxn → max;

 

a11x1 + a12x2 + ... + a1nxn ≤ b1, a21x1 + a22x2 + ... + a2nxn ≤ b2,

...            

am1x1 + am2x2 + ... + amnxn ≤ bm;

(5)

xj ≥ 0,  

Задача линейного программирования, двойственная задаче (5), будет иметь вид:

= b1y1 + b2y2 + ... + bmym → min;

 

a11y1 + a21y2 + ... + am1ym ≥ c1, a12y1 + a22y2 + ... + am2ym ≥ c2,

...            

a1ny1 + a2ny2 + ... + amnym ≥ cn;

(6)

yi ≥ 0,   .

Можно сформулировать правила получения двойственной задачи из задачи исходной.

1. Если в исходной задаче ищется максимум целевой функции, то в двойственной ей - минимум.

2. Коэффициенты при переменных в целевой функции одной задачи являются свободными членами системы ограничений другой задачи.

3. В исходной ЗЛП все функциональные ограничения - неравенства вида “≤”, а в задаче, двойственной ей, - неравенства вида “≥”.

4. Коэффициенты при переменных в системах ограничений взаимно двойственных задач описываются матрицами, транспонированными относительно друг друга.

5. Число неравенств в системе ограничений одной задачи совпадает с числом переменных в другой.

6. Условие неотрицательности переменных сохраняется в обеих задачах.

Связь между оптимальными планами взаимно двойственных задач устанавливают теоремы двойственности.

Теорема 1. Если одна из двойственных задач имеет конечный оптимум, то другая также имеет конечный оптимум, причем экстремальные значения

целевых функций совпадают:

.

(7)

Если целевая функция одной из двойственных задач не ограничена, то условия другой задачи противоречивы.

Теорема 2 (о дополняющей нежесткости). Для того чтобы план и план являлись оптимальными решениями, соответственно, задач (6) и (7) необходимо и достаточно, чтобы выполнялись следующие соотношения:

(8)

Таким образом, если компонент оптимального плана больше нуля, то при подстановке в соответствующее ограничение двойственной задачи оптимального плана это ограничение обращается в верное равенство, и наоборот.

Теорема об оценках. Значения переменных в оптимальном решении двойственной задачи представляют собой оценки влияния свободных членов

bi в системе ограничений прямой задачи на величину целевой функции :

(9)

Компоненты оптимального решения двойственной задачи принято называть двойственными оценками. Часто употребляется также термин «объективно обусловленные оценки».

Применение теорем двойственности (а именно, соотношений (7) и (8)) позволяет, зная оптимальное решение одной из взаимно двойственных задач, без труда отыскать оптимальное решение другой задачи.

На свойствах двойственных оценок базируется экономико-математический анализ распределения ресурсов. В пределах устойчивости двойственных оценок имеют место свойства, рассмотренные ниже.

Свойство 1. Оценки как мера дефицитности ресурсов. Двойственные оценки отражают сравнительную дефицитность факторов производства. Чем выше величина оценки , тем выше дефицитность i-го ресурса. Факторы, получившие нулевые оценки, не являются дефицитными и не ограничивают производство.

Свойство 2. Оценки как мера влияния ограничений на значение целевой функции. Величина двойственной оценки какого-либо ресурса показывает, насколько возросло бы максимальное значение целевой функции, если бы объем данного ресурса увеличился на единицу. В связи с этим значение объективно обусловленной оценки иногда называют теневой ценой ресурса. Теневая цена - это стоимость единицы ресурса в оптимальном решении.

Однако нужно учитывать, что двойственные оценки позволяют измерить эффективность лишь незначительного изменения объема ресурсов. При значительных изменениях может быть получен новый оптимальный план и новые двойственные оценки.

Свойство 3. Оценки как инструмент определения эффективности отдельных хозяйственных решений. С помощью двойственных оценок можно определить выгодность выпуска новых изделий, эффективность новых технологических способов производства. При этом эффективным может считаться тот вариант производства, для которого сумма прибыли, недополученной из-за отвлечения дефицитных ресурсов, будет меньше прибыли получаемой. Разница между этими величинами (Δj) вычисляется как:

 

(10)

В том случае, если Δj ≤ 0, вариант производства является выгодным, если Δj > 0 – вариант невыгоден.

Свойство 4. Оценки как мера относительной заменяемости ресурсов с точки зрения конечного эффекта. Например, отношение / показывает, сколько единиц k-го ресурса может быть высвобождено при увеличении объема i-го ресурса на единицу, для того чтобы максимум целевой функции остался на прежнем уровне; или наоборот, сколько единиц k-го ресурса необходимо дополнительно ввести при уменьшении на единицу объема i-го ресурса, если мы хотим, чтобы значение целевой функции не изменилось.