Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тер вер ответы..doc
Скачиваний:
4
Добавлен:
28.04.2019
Размер:
928.77 Кб
Скачать

15.Числовые характеристики системы двух случайных величин. Ковариация, коэффициент корреляции.

Первые начальные моменты представляют собой уже известные нам математические ожидания величин Х и У, входящих в систему:

a1,0(x, y) = mx; a0,1(x, y) = my. (11.5)

Совокупность математических ожиданий представляет собой характеристику положения системы. Геометрически это координаты средней точки на плоскости, вокруг которой происходит рассеивание случайных точек (Х,У).

 

m1,0(x, y) = М[Х-mx]=0 m0,1(x, y)= М[Y-my)=0; (11.6)

a2,0(x, y) = a2(x) a0,2(x, y) = a2(y)

На практике широко используются вторые центральные моменты системы. Два из них представляют собой дисперсии, которые характеризуют рассеивание случайной точки в направлении осей 0Х и 0Y:

m2,0(x, y) = М[Х-mx)2=D[X]=Dx; m0,2(x, y) = М[Y-my)2 ]=D[Y]=Dy; (11.7)

 

43Ковариация, коэффициент корреляции.

Особую роль играет центральный момент порядка 1+1 или второй смешанный центральный момент, который называется ковариацией или корреляционным моментом

m1,1(x, y) = Kxy= (11.8)

 

Ковариация представляет собой математическое ожидание произведения центрированных случайных величин X и Y и характеризует степень линейной статистической зависимости величин X и Y и рассеивание относительно точки (mx, my):

Kxy = , (11.9)

Или

(11.10)

Расчетные формулы для определения ковариации:

(11.11)

Свойства корреляции:

1. Kxy=Kyx. Это свойство очевидно.

2. Корреляционный момент двух независимых случайных величин Х и У равен нулю.

Доказательство: т.к. случайные величины Х и Y – независимы, то и их совместная плотность распределения представляется произведением плотностей распределения случайных величин fx(x) и fy(y). Тогда:

3. Абсолютная величина корреляционного момента двух случайных величин не превышает среднего геометрического их дисперсий

или

Доказательство: Введем в рассмотрение случайные величины и вычислим их дисперсии

 

Т. к. дисперсия всегда неотрицательна, то

Þ

и

Þ .

Отсюда Þ .

Если , случайные величины Х и Y называются коррелированными. Если , то необязательно, что Х и Y независимы. В этом случае они называются некоррелированными. Итак, из коррелированности двух случайных величин следует их зависимость, но из зависимости еще не вытекает их коррелированность. Из независимости двух случайных величин следует их некоррелированность, но из некоррелированности еще нельзя заключить о независимости этих величин.

Величина ковариации зависит единиц измерения каждой из случайных величин, входящих в систему и от того, насколько каждая из случайных величин отклоняется от своего математического ожидания (одна – мало, вторая – сильно, все равно будет мал).

Поэтому для характеристики связи между Х и Y в чистом виде переходят к безразмерной характеристике, которая называется Коэффициент корреляции rxy характеризует степень линейной зависимости величин:

(11.12)

Свойства коэффициента корреляции:

1. Абсолютная величина коэффициента корреляции двух случайных величин не превышает единицы:

2. │rxy│=1 если Y=aХ+b

Доказательство:

Подставим в выражение

т.к.

Найдем дисперсию Y: , т.е.

, коэффициент корреляции: Þ

Коэффициент корреляции служит для оценки тесноты линейной связи между Х и Y: чем ближе абсолютная величина коэффициента корреляции к 1, тем связь сильнее, чем ближе к 0, тем слабее.

3. Если величины X и Y независимы, то rxy = 0.

16.Функции случайных величин. Числовые характеристики функций случайных величин. Теоремы о числовых характеристиках функций случайных величин.

Пусть некоторая случайная величина Х подвергается детерминированному преобразованию j, в результате которого получается величина У. Рассмотрим задачу определения числовых характеристик и закона распределения получаемой в результате преобразования случайной величины У.

Числовые характеристики функции случайного аргумента.

Рассмотрим случайную величину Y, зависящую функционально от случайной величины X с известным законом распределения F(x): Y=φ(X).

Если Х – дискретная случайная величина и известен ее ряд распределения имеет вид:

Xi

x1

x2

xn

pi

p1

p2

pn

Определяем вероятности появления различных значений случайной величины У

φ(X)i

φ(x1)

φ(x2)

φ(xn)

pi

p1

p2

pn

 

Тогда математическое ожидание случайной величины Y определяется так:

(9.1)

Если случайная величина X непрерывна и имеет плотность распределения f(x), то заменяя в формуле (9.1) вероятности pi элементом вероятности f(x)dx, а сумму – интегралом, получаем:

. (9.2)

Для смешанной случайной величины выражение для математического ожидания преобразуется к виду:

(9.3)

Соотношения (9.1), (9.2) и (9.3) – общее понятие математического ожидания, позволяющее вычислить математическое ожидание для неслучайных функций случайного аргумента. Например, дисперсия случайной величины Y=φ(x) определяется так:

Величину M[φ(x)] рассчитываем в соответствии с (9.1)-(9.3). Для определения математического ожидания квадрата φ(х) воспользуемся следующими соотношениями:

. (9.4)

Таким образом, для нахождения числовых характеристик функции Y=φ(x) достаточно знать закон распределения ее аргумента.

18. Законы распределения функций случайных величин. Функция одного и двух случайных аргументов.

Каждая случайная величина полностью определяется своей функцией распределения.

Если  .- случайная величина, то функция F(x) = F (x) = P( < x) называется функцией распределения случайной величины  . Здесь P( < x) - вероятность того, что случайная величина  принимает значение, меньшее x.

Важно понимать, что функция распределения является “паспортом” случайной величины: она содержит всю информация о случайной величине и поэтому изучение случайной величины заключается в исследовании ее функции распределения, которую часто называют просто распределением.

Функция распределения любой случайной величины обладает следующими свойствами:

  • F(x) определена на всей числовой прямой R;

  • F(x) не убывает, т.е. если x1 x2, то F(x1) F(x2);

  • F(- )=0, F(+ )=1, т.е. и ;

  • F(x) непрерывна справа, т.е.

функция двух случайных аргументов:Если каждой паре возможных значений случайных величин и соответствует одно возможное значение случайной величины , то называют функцией двух случайных аргументов и и пишут:

Если и - дискретные независимые случайные величины, то для того, чтобы найти распределение функции , надо найти все возможные значения , для чего достаточно сложить каждое возможное значение со всеми возможными значениями ; вероятности же найденных значений равны произведениям вероятностей складываемых из значений и .

19. Закон больших чисел. теоремы закона больших чисел устанавливают зависимость между случайностью и необходимостью.

Закон больших чисел- это обобщенное название нескольких теорем, из которых следует, что при неограниченном увеличении числа испытаний средние величины стремятся к некоторым постоянным.

    Неравенство Чебышева.

Лемма: Если случайная величина Х имеет конечные математическое ожидание М(Х) и дисперсию Д(Х), то для любого положительного e справедливо неравенство

Теорема Чебышева: При достаточно большом числе независимых случайных величин Х1, Х2, Х3, ..., Хn, дисперсия каждой из которых не превышает одного и того же постоянного числа В, для произвольного сколько угодно малого числа e справедливо неравенство

Из теоремы следует, что среднее арифметичес­кое случайных величин при возрастании их числа проявляет свойство устойчивости, т. е. стремится по вероятности к неслучайной величине, которой является среднее арифметическое математических ожиданий этих величин, т.е. вероятность отклонения по абсолютной величине среднего арифметического случайных величин от среднего арифметического их математических ожиданий меньше чем на e при неограниченном возрастании n стремится к 1, т.е. становится практически достоверным событием.

частный случай теоремы Чебышева:Пусть при n испытаниях наблюдаются n значений случайной величины X, имеющей математическое ожидание M(X) и дисперсию D(X). Полученные значения можно рассматривать как случайные величины Х1, Х2, Х3, ..., Хn,. Это следует понимать так. Серия из п испытаний проводится неоднократно. Поэтому в результате i-го испытания, i=l, 2, 3, ..., п, в каждой серии испытаний появится то или иное значение случайной величины X, не известное заранее. Следовательно, i-e значение xi случайной величины, полученное в i-м испытании, изменяется случайным образом, если переходить от одной серии испытаний к другой. Таким образом, каждое значение xi можно считать случайной величиной Xi .

Теорема Бернулли. Теорема Бернулли: Если вероятность события А в каждом из п независимых испытаний постоянна и равна р, то при достаточно большом п для произвольного e >0 справедливо неравенство

 

Переходя к пределу, имеем Теорема Бернулли устанавливает связь между вероятностью появления события и его относительной частотой появления и позволяет при этом предсказать, какой примерно будет эта частота в п испытаниях. Из теоремы видно, что отношение т/п обладает свойством устойчивости при неограниченном росте числа испытаний.

Иногда (при решении практических задач) требуется оценить вероятность того, что отклонение числа т появления события в п испытаниях от ожидаемого результата пр не превысит определенного числа e. Для данной оценки неравенство переписывают в виде

20.Центра́льные преде́льные теоре́мы (Ц.П.Т.) — класс теорем в теории вероятностей, утверждающих, что сумма достаточно большого количества слабо зависимых случайных величин, имеющих примерно одинаковые масштабы (ни одно из слагаемых не доминирует, не вносит в сумму определяющего вклада), имеет распределение, близкое к нормальному.

Так как многие случайные величины в приложениях формируются под влиянием нескольких слабо зависимых случайных факторов, их распределение считают нормальным. При этом должно соблюдаться условие, что ни один из факторов не является доминирующим. Центральные предельные теоремы в этих случаях обосновывают применение нормального распределения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]