Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы Лапин младший.doc
Скачиваний:
29
Добавлен:
18.04.2019
Размер:
268.8 Кб
Скачать
  1. Уровни сбора, обработки информации, выработки управляющих воздействий и принятия решений. Дать структуру, пояснить принципы построения.

условное разделение уровней сбора, обработки информации, выработки управляющих воздействий и принятия решений (рис.2), которое соответствует территориальному, функциональному и должностному разделению функций контроля и управления.

Рис.2. Уровни сбора, обработки информации, выработки управляющих воздействий и принятия решений

  1. Понятие промышленной шины.

Промышленная шина - это коммуникационная сеть, объединяющая несколько промышленных систем и функционирующая практически так же, как и локальная сеть в учреждении. Однако для поддержания режима реального времени промышленная шина должна быть детерминистичной - качество, отсутствующее в офисных локальных сетях.

Это:

- детерминированность,

- поддержка больших расстояний между узлами,

- защита от электромагнитных наводок,

- упрочнённая механическая конструкция.

Методы доступа к шине.

Существуют два метода упорядоченного доступа: централизованный и децентрализованный.

В случае централизованного контроля за доступом к шине выделяется узел с правами Мастера. Он назначает и отслеживает порядок и время доступа к шине для всех других участников. Если вдруг Мастер "сломался", то и циклы обмена по шине останавливаются.

Именно по этой причине децентрализованный контроль с переходящими функциями мастера от одного участника (узла сети) к другому получил наибольшее внимание и развитие. Здесь права мастера назначаются группе устройств сети. . Во всем мире широко приняты и используются две модели децентрализованного доступа:

- модель CSMA/CD (например, Ethernet) как стандарт IEEE 802-3;

- модель с передачей маркера как стандарт IEEE 802.4 (Token Passing Model).

Для совместной работы сетей типа CSMA/CD и Token Model необходим так называемый межсетевой шлюз.

Уровни связи и типовые промышленные сети в автоматизации.

Особенности шинных технологий в ШИУС.

7Понятие базы данных.

База данных - совокупность данных, отображающих состояние объектов и их отношений в рассматриваемой предметной области. Организуется таким образом, что данные собираются однажды и централизованно хранятся, а также модифицируются (обновляются) в виде, доступном специалистам и системам программирования, использующих их.

Основные особенности БД.

  1. использование одних и тех же БД различными приложениями;

  2. минимум дублирования данных (дублирование полезно для ускорения доступа к данным или восстановления БД при ее разрушении);

  3. независимость данных от особенностей прикладных программ;

  4. возможность изменения физических особенностей хранения данных без изменения их логической структуры.

Понятие системы управления базами данных.

Система управления базами данных - совокупность языковых и программных средств, предназначенных для создания, ведения и конкурентного использования БД многими пользователями.

Основная особенность СУБД - это наличие процедур для ввода и хранения не только самих данных, но и описаний их структуры. Файлы, снабженные описанием хранимых в них данных и находящиеся под управлением СУБД, называются в свою очередь базами данных. Одна из основных задач СУБД- централизованное управление БД.

Связь программ и данных при использовании СУБД.

8. ПРИНЦИПЫ ПОСТРОЕНИЯ БАЗ ДАННЫХ

К современным базам данных, а, следовательно, и к СУБД, на которых они строятся, предъявляются следующие основные требования.

1. Высокое быстродействие (малое время отклика на запрос).

Время отклика - промежуток времени от момента запроса к БД до фактического получения данных. Похожим является термин время доступа - промежуток времени между выдачей команды записи (считывания) и фактическим получением данных. Под доступом понимается операция поиска, чтения данных или записи их. Часто операции записи, удаления и модификации данных называют операцией обновления.

2. Простота обновления данных.

3. Независимость данных.

4. Совместное использование данных многими пользователями.

5. Безопасность данных - защита данных от преднамеренного или непреднамеренного нарушения секретности, искажения или разрушения.

6. Стандартизация построения и эксплуатации БД (фактически СУБД).

7. Адекватность отображения данных соответствующей предметной области.

8. Дружелюбный интерфейс пользователя.

Важнейшими являются первые два противоречивых требования: повышение быстродействия требует упрощения структуры БД, что, в свою очередь, затрудняет процедуру обновления данных, увеличивает их избыточность.

Независимость данных - возможность изменения логической и физической структуры БД без изменения представлений пользователей.

Независимость данных предполагает инвариантность к характеру хранения данных, программному обеспечению и техническим средствам. Она обеспечивает минимальные изменения структуры БД при изменениях стратегии доступа к данным и структуры самих исходных данных. Это достигается «смещением» всех изменений на этапы концептуального и логического проектирования с минимальными изменениями на этапе физического проектирования.

Безопасность данных включает их целостность и защиту.

Целостность данных - устойчивость хранимых данных к разрушению и уничтожению, связанных с неисправностями технических средств, системными ошибками и ошибочными действиями пользователей.

Она предполагает:

1. отсутствие неточно введенных данных или двух одинаковых записей об одном и том же факте;

2 защиту от ошибок при обновлении БД;

3. невозможность удаления (или каскадное удаление) связанных данных разных таблиц;

4. неискажение данных при работе в многопользовательском режиме и в распределенных базах данных;

5. сохранность данных при сбоях техники (восстановление данных).

Целостность обеспечивается триггерами целостности – специальными приложениями-программами, работающими при определенных условиях. Защита данных от несанкционированного доступа предполагает ограничение доступа к конфиденциальным данным и может достигаться:

1. введением системы паролей;

2. получением разрешений от администратора базы данных (АБД);

3. запретом от АБД на доступ к данным;

4. формирование видов - таблиц, производных от исходных и предназначенных конкретным пользователям.

Три последние процедуры легко выполняются в рамках языка структуризованных запросов Structured Query Language - SQL, часто называемого SQL2.

Стандартизация обеспечивает преемственность поколений СУБД, упрощает взаимодействие БД одного поколения СУБД с одинаковыми и различными моделями данных. Стандартизация (ANSI/SPARC) осуществлена в значительной степени в части интерфейса пользователя СУБД и языка SQL. Это позволило успешно решить задачу взаимодействия различных реляционных СУБД как с помощью языка SQL, так и с применением приложения Open DataBase Connection (ODBC). При этом может быть осуществлен как локальный, так и удаленный доступ к данным (технология клиент/сервер или сетевой вариант).

Дать сравнительный анализ иерархических, реляционных и др. БД.

Первыми попытками абстрагирования программ от физических структур данных были индексные файлы, обеспечивающие доступ к информации посредством индексных ключей, т. е. для поиска записей в файле использовалась совокупность указателей.

Такой подход решал определенный круг проблем, но индексным файлам по-прежнему были присущи многие ограничения, характерные для простых структур с единственной точкой входа. Сюда можно отнести, в частности, и неоптимальное хранение информации (дублирование, недостаточное структурирование), и значительное время поиска в больших файлах.

В качестве возможного решения этих проблем явились иерархические БД. В таких базах элементы данных строго упорядочены, причем так, что данные одного уровня подчиняются (является подмножеством) данным другого, более высокого уровня. В такой модели связи данных могут быть отражены в виде дерева-графа, где допускаются только односторонние связи от старших вершин к младшим.

Иерархические БД не получили широкого распространения. Реальный мир отнюдь не является иерархическим. Перспективнее оказались сетевые СУБД, учитывающие более сложные взаимосвязи между элементами, составляющими БД (теоретически, по крайней мере, допускаются связи "всех со всеми"). Управляющие программы для таких СУБД становились все более и более независимыми от физических структур данных. Но все равно необходимо знать, как управлять этими структурами. По-прежнему для таких моделей характерна сложность реализации СУБД, а сами программы остаются весьма чувствительными к модификациям. А поскольку каждый элемент данных должен содержать ссылки на другие элементы, требуются значительные объемы памяти, как дисковой, так и оперативной. Дефицит последней может приводить к замедлению доступа к данным, лишая сетевую БД основного ее достоинства - быстродействия.

Процесс отделения программ от структур данных в конечном итоге завершили реляционные базы данных (РБД).

В РБД все данные представлены исключительно в формате таблиц или, по терминологии реляционной алгебры, отношений (relation). Таблица в реляционной алгебре - это неупорядоченное множество записей (строк), состоящих из одинакового набора полей (столбцов). Каждая строка характеризует некий объект, каждый столбец - одну из его характеристик. Совокупность таких связанных таблиц и составляет БД, при этом таблицы полностью равноправны - между ними не существует никакой иерархии. Реляционная модель является простейшей и наиболее привычной формой представления данных.

РБД позволили моделям данных отражать взаимосвязи прикладной области, а не методы программного доступа к данным и структурам данных. Это - огромный шаг вперед по нескольким причинам:

Отражающие прикладную область знаний модели данных являются интуитивно понятными конечному пользователю.

Роль БД в промышленных SCADA.

Под термином SCADA понимают инструментальную программу для разработки программного обеспечения систем управления технологическими процессами в реальном времени и сбора данных. Реже термин SCADA-система используют для обозначения программно-аппаратного комплекса сбора данных (телемеханического комплекса).

Основные задачи, решаемые SCADA-системами:

Обмен данными с промышленными контроллерами и платами ввода/вывода в реальном времени через драйверы.

Обработка информации в реальном времени.

Отображение информации на экране монитора в понятной для человека форме.

Ведение базы данных реального времени с технологической информацией.

Аварийная сигнализация и управление тревожными сообщениями.

Подготовка и генерирование отчетов о ходе технологического процесса.

Осуществление сетевого взаимодействия между SCADA ПК.

Обеспечение связи с внешними приложениями (СУБД, электронные таблицы, текстовые процессоры и т. д.). В системе управления предприятием такими приложениями чаще всего являются приложения, относимые к уровню MES.

SCADA-системы позволяют разрабатывать АСУ ТП в клиент-серверной или в распределенной архитектуре DCS.

Термин SCADA эволюционировал вместе с развитием технологий автоматизации и управления технологическими процессами. В 80-е годы под SCADA-системами понимали любые программно-аппаратные комплексы сбора данных реального времени. В 90-х годах термин SCADA больше используется для обозначения только программной части АСУ ТП.