Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Биофизика готовые.doc
Скачиваний:
80
Добавлен:
16.04.2019
Размер:
2.48 Mб
Скачать

4. Энтропия. Энтропия и вероятность, скорость продукции энтропии. Соотношение Онзагера между потоком и движущей силой есть взаимосвязь.

Для систем находящихся вблизи состояния равновесия собственная скорость продукции энтропии diS/dt = SσdV > 0, мин, где σ- функция диссипации. Если процесс происходит в изолированной системе (dQ = 0), то в обратном процессе энтропия не изменяется S2 – S1 = 0, S – постоянное, а в необратимом – возрастает. Если небольшое количество теплоты dQ переходит от 1 тела ко второму, то при этом энтропия первого тела уменьшается на dS1 = dQ/T1, а второго увеличивается на dS2= d Q/T2 Полное изменение энтропии системы +, dS = - dS1 + dS2 = d Q/T2 - d Q/T1 > 0, отсюда следует, что энтропия изолированной системы возрастает. Энтропия системы организма – окружающей среды возрастает как у изолированной системы, однако энтропия организма при этом сохраняется постоянной. Упорядоченность организма сохраняется ценой уменьшения упорядоченности окружающей среды. dS/dt = dSi/dt + dSe/dt, для стационарного состояния (dS/dt = 0), изменение S обуславливается dSi/dt = - dSe/dt, изменение S вызванное взаимодействием системы с внешними телами. По принципу Пригожина, производная dSi/dt больше 0, отсюда следует, что скорость изменения энтропии окружающей среды при сохранении стационарного состояния организма также минимальна. Энтропия – мера неупорядоченности частиц системы. Неупорядоченность состояния системы количественно характеризуется так же термодинамической вероятностью (W) - число способов размещения частиц или число микросостояний, реализующих данное макросостояние. Частицы газа: а, b, c, d находятся в V разделенном на 2 равные ячейки (1 – ячейка – а, 2 – ячейка – b, c, d – 1 – V, 1 – ячейка – b, 2 – ячейка – а c, d - 2– V, 1 – ячейка – с,2 – ячейка – b, а,d – 3– V, 1 – ячейка – d,2– ячейка – b, c, а– 4– V) – 1 – макросостояние, 4 – микросостояний. ( 1 – ячейка – а, b, 2 – ячейка – c, d – 1 – V, 1 – ячейка – а c , 2– ячейка – b, d - 2– V, 1 – ячейка – а, d, 2– ячейка – b, с3– V, 1 – ячейка – b, c, 2– ячейка – а, d - 4– V, 1 – ячейка – b, d, 2– ячейка – а c – 5 – V, 1 – ячейка – c, d, 2– ячейка – b, а– 6 – V) – 1 макросостояние, 6 микросостояний. Система, предоставленная самой себе стремится прийти к макросостоянию которое реализуется наибольшим количеством микросостояний. Формулировка Планка: S = klnW, k –постоянная Больцмана (связь между температурой и энергией 1,380 6504(24)×10−23 Дж·К−1).

Под термодинамической движущей силой понимают разность каких-либо потенциалов (концентраций, температур, давлений и т.д.), которая вызывает протекание соответствующего процесса, является его причиной. Под термодинамическим потоком - количественное выражение процесса, изменение характеризующей его величины за единицу времени. Между ними существует взаимосвязь, при которой увеличение (уменьшение) движущей силы вызывает увеличение (уменьшение) скорости процесса. Это относится не только к химическим реакциям, но и к другим необратимым процессам.

Если система находится вблизи равновесия, где величины движущих сил и потоков очень малы, то между ними имеется прямая пропорциональная зависимость: J = LX, где Х - движущая сила, J - величина потока, L - постоянный линейный коэффициент.

Если в открытой системе вблизи равновесия протекают одновременно несколько процессов, то между ними существуют термодинамические соотношения, отражающие их взаимное влияние. Для двух процессов (J1 , X1) и (J2 , X2) эти соотношения имеют вид J1 = L11X1 + L12X2, J2 = L21X1 + L22X2, где постоянные коэффициенты L11 , L22 отражают зависимость потока от своей силы, а коэффициенты L12 , L21 соответствуют взаимному влиянию силы одного процесса на поток другого процесса. Они носят название коэффициентов взаимности Онзагера. Вблизи равновесия L12 = L21 .

Закон Ома для участка цепи I = U/R, I = fx, 1/R = f – линейный коэффициент Онзагера. Поток вещества через систему Q = (P1 – P2)/x, I1 = f11x1 + f12x2, I2 = f21x1 + f22x2, I = - URT(dc/dx). Как один поток влияет на другой, так другой влияет на первый. f21 = f12 уравнение взаимности Онзагена.

.