Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ekzamen_KSYe.doc
Скачиваний:
16
Добавлен:
15.04.2019
Размер:
350.21 Кб
Скачать

2) Развитие учения о составе вещества.

Первый по-настоящему действенный способ решения проблемы происхождения свойств вещества появился в XVII в. в работах английского ученого Р. Бойля. Его исследования показали, что качества и свойства тел зависят от того, из каких химических элементов эти тела составлены. У Бойля наименьшими частичками вещества оказывались неосязаемые органами чувств мельчайшие структуры — атомы, или, как он их называл, minima naturalia. Эти частицы могли связываться друг с другом, образуя более крупные соединения - молекулы — кластеры, по терминологии Бойля. Сегодня мы вместо термина «кластер» используем понятие «молекула».

В период с середины XV11 в. до первой половины XIX в. учение о составе вещества представляло собой всю тогдашнюю химию. Оно существует и сегодня, представляя собой первую концептуальную систему химии. На этом уровне химического знания ученые решали и решают три важнейшие проблемы: химического элемента, химического соединения и задачу создания новых материалов с использованием вновь открытых химических элементов.

Концепция химического элемента

Концепция химического элемента появилась в химии как результат стремления человека обнаружить первоэлемент природы. Корни решения данной проблемы уходят в Древнюю Грецию, где возникли учения о первоэлементах природы. Там жеозникла и атомистическая концепция природы, возрожденная в Новое время в химии Р. Бойлем. Бойль положил начало современному представлению о химическом элементе как о простом теле, пределе химического разложения вещества, переходящем без изменения из состава одного сложного тела в другое.

Но еще целый век после этого химики делали ошибки в выделении химических элементов. Дело в том, что, сформулировав понятие химического элемента, химики еще не знали ни одного из них.

Д.И. Менделеев доказал, что свойства химического элемента зависят от места данного атома в периодической системе. Сам Менделеев определял это место по атомной массе, но в XX в. было выяснено, что порядковый номер элемента зависит не от атомной массы, а от заряда атомного ядра и количества электронов. В настоящее время известно, что атом представляет собой сложную квантово-механическую систему, состоящую из положительно заряженного ядра и отрицательно заряженной электронной оболочки. Выяснены особенности строения электронных орбиталей атомов всех элементов и особая роль внешнего электронного уровня атома, от количества электронов в котором зависит реакционная способность элемента — химическая активность вещества, учитывающая как разнообразие реакций, возможных для данного вещества, так и их скорость.

Современный окружающий человека мир заполнен многочисленными соединениями, образованными элементами периодической системы Менделеева. Во времена самого Менделеева было известно всего 62 химических элемента. В 30-е гг. XX в. таблица Менделеева включала 88 элементов, а всего в ней было 92 клетки (элемент под номером 92 — это уран). Сегодня науке известно 110 химических элементов и химиков продолжает волновать вопрос, сколько всего элементов в таблице Менделеева. Химическим элементом называют все атомы, имеющие одинаковый заряд ядра.

Концепция химических соединений

Долгое время химики эмпирическим путем определяли, что относится к химическим соединениям, а что — к простым телам или смесям. Еще в начале XIX в. Ж. Пруст сформулировал закон постоянства состава, в соответствии с которым любое индивидуальное химическое соединение обладает строго определенным, неизменным составом — прочным притяжением составных частей (атомов) и тем самым отличается от смесей. Также Пруст установил, что всякое чистое вещество независимо от его происхождения и способа получения имеет один и тот же состав.

Теоретическое обоснование закона Пруста было дано Дж. Дальтоном в законе кратных отношений. Согласно этому закону состав любого вещества можно представить как простую формулу, а эквивалентные составные части молекулы — атомы, обозначавшиеся соответствующими символами, могли замещаться на другие атомы.

После этого долго считали, что состав химического соединения может быть только постоянным. Но дальнейшее развитие химии и изучение все большего числа соединений приводили химиков к мысли, что наряду с веществами, имеющими постоянный состав, существуют еще и соединения переменного состава, или бертоллиды. В результате были переосмыслены представления о молекуле в целом. Молекулой, как и прежде, продолжали называть наименьшую частичку вещества, способную определять его свойства и существовать самостоятельно. Но в XX в. была понята сущность химической связи, которая стала пониматься как вид взаимодействия между атомами и атомно-молекулярными частицами, обусловленный совместным использованием их электронов. Существуют ковалентные полярные, ковалентные неполярные ионные, водородные и металлические химические связи, отличающиеся характером физического взаимодействия частиц между собой.

Поэтому теперь под химическим соединением понимают определенное вещество, состоящее из одного или нескольких химических элементов, атомы которых за счет взаимодействия друг с другом объединены в частицу, обладающую устойчивой структурой — молекулу, комплекс, монокристалл или иной агрегат.

Особой разновидностью химических элементов являются изотопы, у которых ядра атомов отличаются числом нейтронов (поэтому у них разная атомная масса), но содержат одинаковое число протонов и поэтому занимают одно и то же место в периодической системе элементов. Термин «изотоп» был введен в 1910 г. Фредериком Содди, известным английским радиохимиком, лауреатом Нобелевской премии. Различают стабильные (устойчивые) и нестабильные (радиоактивные) изотопы.

С момента открытия изотопов наибольший интерес вызвали радиоактивные изотопы, которые стали широко использоваться в атомной энергетике, приборостроении, медицине и т.д. В настоящее время выпускается огромное количество различных приборов, содержащих радиоактивные изотопы. Они служат для определения плотности, однородности, гигроскопичности и других характеристик материалов.

Довольно широко используется метод меченых атомов, который позволяет проследить за перемещением химических соединений при физических, химических и биологических процессах Для этого в исследуемое вещество вводятся радиоактивные изотопы определенных элементов и ведется наблюдение за их продвижением.

В медицине с помощью радиоактивных изотопов лечат многие заболевания, в том числе онкологические. Кроме того, батареи небольшой мощности на изотопах плутония-238 и кюрия-224 применяются в приборах для стабилизации ритма сердца. В химической промышленности изотопы используются для облучения полиэтилена и других полимеров с целью повышения их термостойкости и прочности.

Таким образом, правильное использование радиоактивных изотопов приносит несомненную пользу человечеству: рентгеновское обследование и лучевую терапию в лечебных целях.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]