Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
(3) класификация сварки.doc
Скачиваний:
59
Добавлен:
18.12.2018
Размер:
24.14 Mб
Скачать

3.15. Диффузионная сварка

Отличительная особенность диффузионной сварки от других спо­собов сварки давлением - относительно высокие температуры на­грева (0,5-0,7 7* ) и сравнительно низкие удельные сжимающие дав­ления (0,5-0 МПа) при изотермической выдержке от нескольких ми­нут до нескольких часов.

Формирование диффузионного соединения определяется такими физико-химическими процессами, протекающими при сварке, как взаимодействие нагретого металла с газами окружающей среды, очи­стка свариваемых поверхностей от оксидов, развитие высокотемпе­ратурной ползучести и рекристаллизации. В большинстве случаев это диффузионные, термически активируемые процессы.

Для уменьшения скорости окисления свариваемых заготовок и создания условий очистки контактных поверхностей от оксидов при сварке могут быть применены газы-восстановители, расплавы со­лей, флюсы, обмазки, но в большинстве случаев используют вакуум или инертные газы.

Очистка поверхностей металлов от оксидов может происходить в результате развития процессов сублимации и диссоциации оксидов, растворения оксидов за счет диффузии кислорода в металл (ионов металла в оксид), восстановления оксидов элементами - раскислителями, содержащимися в сплаве и диффундирующими при нагреве к границе раздела металл - оксид. Расчет и эксперимент показывают, что, например, на стали оксиды удаляются наиболее интенсивно пу­тем их восстановления углеродом, а на титане - за счет растворения кислорода в металле.

Сближение свариваемых поверхностей происходит в первую оче­редь в результате пластической деформации микровыступов и при­поверхностных слоев, обусловленной приложением внешних сжи­мающих напряжений и нагревом металла. В процессе деформации свариваемых поверхностей, свободных от оксидов, происходит их активация, и при развитии физического контакта между такими по­верхностями реализуется их схватывание.

При диффузионной сварке одноименных металлов сварное соеди­нение достигает равнопрочности основному материалу в том слу­чае, когда структура зоны соединения не отличается от структуры основного материала. Для этого в зоне контакта должны образовываться общие для соединяемых материалов зерна. Это возможно за счет миграции границ зерен, осуществляемой либо путем первич­ной рекристаллизации, либо путем собирательной рекристаллизации.

С помощью диффузионной сварки в вакууме получают высокока­чественные соединения керамики с коваром, медью, титаном, жаро­прочных и тугоплавких металлов и сплавов, электровакуумных стё­кол, оптической керамики, сапфира, графита с металлами, компози­ционных и порошковых материалов.

Соединяемые заготовки могут быть весьма различны по своей форме и иметь компактные (рис. 3.66, а) или развитые (рис. 3.66, б, б) поверхности контактирования. Геометрические размеры сварива­емых деталей находятся в пределах от нескольких микрометров (при изготовлении полупроводниковых приборов) до нескольких метров (при изготовлении слоистых конструкций).

Схематически процесс диффузионной сварки можно представить следующим образом. Свариваемые заготовки собирают в приспособ­лении, позволяющем передавать давление в зону стыка, вакуумируют и нагревают до температуры сварки. После этого прикладывают сжимающее давление на заданный период времени. В некоторых случаях после снятия давления изделие дополнительно выдерживают при температуре сварки для более полного протекания рекрис-таллизационных процессов, способствующих формированию доб­рокачественного соединения. По окончании сварочного цикла сбор­ку охлаждают в вакууме, инертной среде или на воздухе в зависимо­сти от типа оборудования.

В зависимости от напряжений, вызывающих деформацию метал­ла в зоне контакта и определяющих процесс формирования диффузи­онного соединения, целесообразно условно различать сварку с высоко­интенсивным (Р г 20 МПа) и низкоинтенсивным (Р s 2 МПа) силовым воздействием. При сварке с высокоинтенсивным воздействием свароч­ное давление создают, как правило, прессом, снабженным вакуумной камерой и нагревательным устройством (рис. 3.67). Но на таких уста­новках можно сваривать детали ограниченных размеров (как правило, диаметром до 80 мм (см. рис. 3.66, а). При изготовлении крупногаба­ритных двухслойных конструкций (см рис. 3.66, б) применяют откры­тые прессы. При этом свариваемые детали перед помещением в пресс собирают в герметичные контейнеры, которые вакуумируют и на­гревают до сварочной температуры (рис. 3.68).

Рис. 3.66. Некоторые типы конструкций, по­лучаемых диффузион­ной сваркой

Рис. 3.67. Принципиальная схема уста­новки для диффузионной сварки (а) и общий вид многопозиционной установ­ки СДВУ-4М (б):

1 - вакуумная камера; 2 - система охлаждения камеры; 3 - вакуумная систе­ма; 4 - высокочастотный генератор; 5 - гидросистема пресса

Рис. 3.68. Технологическая схема диффузионной сварки с высокоинтенсивным силовым воздействием:

а - требуемая конструкция; б - заготовки для сварки; в - технологические элементы-вкладыши; г ~ сборка; д - сварка в прессе; е — демонтаж; ж -готовая конструкция; 1 -технологические вкладыши; 2 - технологический контейнер; 3 – пресс.

Для исключения возможности потери устойчивости свариваемых элементов, передачи давления в зону сварки и создания условий ло­кально направленной деформации свариваемого металла в зоне сты­ка диффузионную сварку осуществляют в приспособлениях с при­менением для заполнения «пустот» (межреберных пространств) тех­нологических вкладышей и блоков (см. рис. 3.68), которые после сварки демонтируют или удаляют химическим травлением.

При сварке с высокоинтенсивным силовым воздействием локаль­ная деформация металла в зоне соединения, как правило, достигает

нескольких десятков процентов, что обеспечивает стабильное полу­чение доброкачественного соединения.

Для изготовления слоистых конструкций (см. рис. 3.66, в) перспек­тивна диффузионная сварка с низкоинтенсивным силовым воздействи­ем, при которой допустимые сжимающие усилия ограничены устойчи­востью тонкостенных элементов. При этом способе диффузионной свар­ки не требуется сложного специального оборудования.

При изготовлении плоских (или с большим радиусом кривизны) конструкций сжимающее усилие наиболее просто может быть обес­печено за счет атмосферного давления воздуха Q на внешнюю по­верхность технологической оснастки при понижении давления газа в зоне соединения (рис. 3.69).

Рис. 3.69. Технологическая схема диффузионной сварки с низкоинтенсив­ным силовым воздействием плоских конструкций:

а - требуемая конструкция; б - заготовки для сварки; в - сборка; г - сварка; д - готовая конструкция;

1 - несущая обшивка; 2 - готовый заполнитель; 3 - технологические листы; 4 – мембрана

_______________________________________________

Наличие технологических элементов (прокладок, мембран и др.), обладающих локальной жесткостью и помещенных с внешней сто­роны свариваемых элементов, исключает возможность потери устой­чивости обшивок в виде прогибов неподкрепленных участков. Ве­личина сварочного давления Р ограничивается предельным напря­жением потери устойчивости заполнителя

σп.з (P≤σ п.з)

При изготовлении конструкций сложного криволинейного про­филя может быть использована технологическая схема (рис. 3.70), при которой давление нейтрального газа воспринимается непосредственно внешними элементами самой конструкции, например, несу­щими обшивками, оболочками. В процессе сварки обшивки на не­подкрепленных участках под давлением газа деформируются (про­гибаются). Это ухудшает условия для формирования соединения, уменьшает сечение сообщающихся каналов, ухудшает аэродинами­ческое состояние поверхности. В этом случае Р ограничивается на­пряжением, при котором имеет место чрезмерная остаточная дефор­мация обшивок на неподкрепленных участках (P≤ σ п.o).

В ряде случаев можно исключить применение внешнего давле­ния для сжатия свариваемых заготовок, используя явления терми­ческого напряжения, возникающего при нагреве материалов с раз­личными коэффициентами линейного расширения. При сварке коак-сиально собранных заготовок коэффициент линейного расширения охватывающей детали должен быть меньше коэффициента линейно­го расширения охватываемой детали (см. рис. 3.66, а).

Качество соединения при диффузионной сварке в вакууме опре­деляется комплексом технологических параметров, основные из ко­торых - температура, давление, время выдержки. Диффузионные процессы, лежащие в основе формирования сварного соединения, являются термически активируемыми, поэтому повышение темпе­ратуры сварки стимулирует их развитие. Для снижения сжимающе­го давления и уменьшения длительности сварки температуру нагре­ва свариваемых деталей целесообразно устанавливать по возможно­сти более высокой; металлы при этом обладают меньшим сопротив­лением пластической деформации. Вместе с тем необходимо учиты­вать возможность развития процессов структурного превращения, гетеродиффузии, образования эвтектик и других процессов, приво­дящих к изменению физико-механических свойств свариваемых ме­таллов.

Удельное давление влияет на скорость образования диффузион­ного соединения и величину накопленной деформации свариваемых заготовок. В большинстве случаев чем выше удельное давление, тем меньше время сварки и больше деформация. Так, при сварке в прес­се с использованием высоких удельных давлений (до нескольких десятков мегапаскалей) время образования соединения может изме­ряться секундами, а деформация металла в зоне соединения десят­ками процентов. При сварке с использованием низких удельных дав­лений (десятые доли мегапаскаля) время сварки может исчисляться часами, но деформация соединяемых заготовок при этом составляет доли процента. Таким образом, задачу выбора удельного давления следует решать с учетом типа конструкций, технологической схемы и геометрических размеров соединяемых заготовок, а время сварки выбирать с учетом температуры и удельного давления. При сварке разнородных материалов увеличение длительности сварки может сопровождаться снижением механических характеристик соедине­ния из-за развития процессов гетеродиффузии, приводящих к фор­мированию в зоне соединения хрупких интерметаллидных фаз.

Для осуществления диффузионной сварки в настоящее время со­здано свыше 70 типов сварочных диффузионно-вакуумных устано­вок. Разработка и создание установок для диффузионной сварки в настоящее время ведется в направлении унифицирования систем (ва­куумной, нагрева, давления, управления) и сварочных камер. Меняя камеру в этих установках, можно значительно расширить номенкла­туру свариваемых узлов. Некоторые виды конструкций, изготовлен­ных диффузионной сваркой, приведены на рис. 3.71.

Рис. 3.70. Технологическая схема диффузионной сварки с низкоинтенсив­ным силовым воздействием конструкций сложной формы: а - требуемая конструкция; б - заготовки для сварки; в - сварка; г - харак­тер деформации элементов конструкции при сварке;1 - внешняя оболочка; 2 - внутренняя оболочка

Рис. 3.71. Примеры титановых конструкций, изготовленных диффузионной

сваркой