Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методы и приборы мониторинга.doc
Скачиваний:
69
Добавлен:
02.11.2018
Размер:
235.01 Кб
Скачать

5.4. Дозиметрия и радиометрия ионизирующих излучений

Радиометрия - обнаружение и измерение числа распадов атомных ядер в радиоактивных источниках или некоторой их доли по испускаемому ядрами излучению.

Дозиметрия - измерение рассеяния и поглощения энергии ионизирующего излучения в определенном материале. Доза излуче­ния определяется энергией и видом падающего излучения, а также природой поглощающего материала.

Дозиметрия и радиометрия направлены на решение разных задач, однако объединяют их общие методические принципы обна­ружения и регистрации ионизирующих излучений. В зависимости от характера задач приборы для измерения ионизирующих излучений делятся на три группы:

  1. радиометры предназначены для измерения активности ра­диоактивных веществ, плотности потока ионизирующих излучений, удельной и объемной активности газов, жидкостей, аэрозолей, раз­личных объектов внешней среды, пищевых продуктов, а также удельной поверхностной активности;

  2. дозиметры предназначены для измерения экспозиционной дозы рентгеновского и у-излучений, поглощенной дозы излучений, мощности экспозиционной дозы рентгеновского и у-излучений, мощ­ности поглощенной дозы и интенсивности ионизирующих излучений;

3) спектрометры предназначены для измерения распределе­ния излучений по энергии, заряду и массам, а также пространствен­но-временных распределений излучений.

Рассмотрим методы регистрации ионизирующих излучений:

1. Ионизационный метод основан на измерении эффекта взаимодействия излучения с веществом - ионизации газа, запол­няющего регистрационный прибор.

Ионизационные детекторы излучения представляют собой помещенный в герметичную камеру, заполненную воздухом или га­зом, заряженный электрический конденсатор (электроды) для созда­ния в камере электрического поля. Заряженные частицы (а или р), попавшие в камеру детектора, производят в ней первичную иониза­цию газовой среды; у-кванты вначале образуют быстрые электроны в стенке детектора, которые затем вызывают ионизацию газа в камере. В результате образования ионных пар газ становится проводником электрического тока. При отсутствии напряжения на электродах все ионы, появившиеся при первичной ионизации, переходят в ней­тральные молекулы, а при возрастании напряжения под действием электрического поля ионы начинают направленно двигаться, т.е. возникает ионизационный ток. Сила тока служит мерой количества излучения и может быть зарегистрирована прибором. -

При некотором значении напряжения все образованные при излучении ионы достигают электродов, и при увеличении напряже­ния ток не возрастает, т.е. возникает область тока насыщения. Сила ионизационного тока насыщения в данной области зависит от числа первичных пар ионов, созданных ядерным излучением в камере де­тектора. В этих условиях работают ионизационные камеры.

При дальнейшем увеличении напряжения сила тока вновь возрастает, так как образованные излучением ионы, особенно элек­троны, при движении к электродам приобретают ускорения, доста­точные для того, чтобы самим производить ионизацию вследствие соударений с атомами и молекулами газа. Этот процесс получил на­звание ударной или вторичной ионизации, Эту область напряжений называют областью пропорциональности, т.е. областью, где сущест­вует строгая пропорциональность между числом первично образо­ванных ионов и общей суммой ионов, участвующих в создании ионизационного тока. В данном режиме работают пропорциональные счетчики.

При дальнейшем увеличении напряжения сила ионизацион­ного тока уже не зависит от числа первичных пар ионов. Газовое усиление настолько возрастает, что при появлении любой ядерной частицы возникает самостоятельный газовый разряд. Эту область напряжений называют областью Гейгера, в данном режиме работают счетчики Гейгера-Мюллера.

2. Сцинтилляторный метод основан на регистрации фото­электронным умножителем (ФЭУ) вспышек света (сцинтилляций), возникающих в некоторых веществах (сцинтилляторах) под действи­ем излучения. По составу сцинтилляторы делят на неорганические и органические, а по агрегатному состоянию - на твердые, пластические, жидкие и газовые.

Из неорганических сцинтилляторов для регистрации излуче­ний широко используют йодистый натрий (цезий), активированный талием - Nal (T1), а также вольфрамат кальция CaWO.», так как они могут быть получены в виде больших монокристаллов. Для реги­страции нейтронов применяют сцинтилляторы из йодистого лития -Lil (Sn).

Органические сцинтилляторы представлены следующими со­единениями: монокристаллы антрацена СцНю, стиблена CMHi2 и др.; пластмассы (на основе полистирола и поливинилтолуола); жидкие фосфоры (раствор терфинила) и инертные газы - гелий, аргон, неон и др.

  1. Люминесцентный метод основан на накапливании час­ти энергии поглощенного ионизирующего излучения и отдачи его в виде светового свечения после дополнительного воздействия ульт­рафиолетовым излучением (или видимым светом) или нагревом. Под действием излучения в люминофоре (щелочно-галоидных соедине­ниях типа LiF, Nal, фосфатных стекол, активированных серебром) создаются центры фотолюминесценции, содержащие атомы и ионы серебра. Последующее освещение люминофоров ультрафиолетовым светом вызывает видимую люминесценцию, интенсивность которой в диапазоне 0,1-10 Гр пропорциональна дозе, затем достигает максимума (при 350 Гр), а при дальнейшем увеличении дозы падает.

  2. Фотографический метод основан на способности излу­чения при взаимодействии с галогенидами серебра (AgBr или AgCI) фотографической эмульсии восстанавливать металлическое серебро подобно видимому свету, которое после проявления выделяется в виде почернения. При этом степень почернения фотопластинки про­порциональна дозе излучения.

  1. Химический метод основан на измерении числа молекул или ионов (радиационно-химический выход), образующихся или пре­терпевших изменение при поглощении веществом излучения.

В химических дозиметрах подобраны вещества с выходом хи­мической реакции, пропорциональным поглощенной энергии ионизи­рующего излучения. В настоящее время широко используется ферросульфатный дозиметр, основанный на реакции окисления под дейст­вием излучения двухвалентного железа в трехвалентное.