Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Сверхпроводимость2-1.docx
Скачиваний:
34
Добавлен:
15.03.2016
Размер:
373.59 Кб
Скачать
  1. Полное вытеснение магнитного поля - Эффект Мейснера-Оксенфельда, о котором подробно рассказывается далее.

Эффект Мейснера-Оксенфельда. В течение 22 лет после открытия сверхпроводимости считалось, что сверхпроводник — это идеальный проводник, т. е. просто металл с сопротивлением равным нулю.

Посмотрим, как должен вести себя такой идеальный проводник во внешнем магнитном поле (достаточно слабом, чтобы не разрушить сверхпроводимость). Пусть в исходном состоянии идеальный проводник охлажден до некоторой температуры T < Tc и внешнее магнитное поле отсутствует. Внесем теперь такой идеальный проводник во внешнее магнитное поле. Сразу при появлении внешнего магнитного поля на поверхности идеального проводника возникает ток, который по правилу Ленца создает свое собственное магнитное поле, направленное навстречу приложенному и полное поле в образце будет равно нулю в любой точке образца.

Рис.4. Нормальный проводник, обладающий отличным от нуля сопротивлением при любой температуре (1), внесен в магнитное поле. В соответствии с законом электромагнитной индукции возникают токи, которые сопротивляются проникновению магнитного поля в металл (2). Однако если сопротивление отлично от нуля, они быстро затухают. Магнитное поле пронизывает образец нормального металла и практически однородно (3);

Однако, того же состояния (идеальный проводник при T < Tc во внешнем магнитном поле) можно достигнуть и другим путем: сначала наложить внешнее магнитное поле на ”теплый” образец с T > Tc , а затем охладить его до температуры T < Tc . Тогда электродинамика, основанная на уравнениях Максвелла, предсказывает для идеального проводника иной результат. При T > Tc, ρ0 и магнитное поле хорошо проникает в образец. После охлаждения его ниже Tc поле остается в образце.

В 1933 году Мейснер и Оксенфельд обнаружили, что при T < Tc магнитное поле в образце равно нулю всегда B = 0, независимо от пути перехода к условию T < Tc при наличии магнитного поля, и, следовательно, это равенство (B = 0) можно рассматривать как характеристику сверхпроводящего состояния, которое возникает при H < Hc. Итак, сверхпроводящее состояние удовлетворяет уравнениям, которые вытекают из экспериментальных данных

ρ = 0,

B = 0.

Таким образом можно сказать, что сверхпроводник это не идеальный проводник, а идеальный диамагнетик! По этой причине эффект Мейснера приводит ко многим интересным явлениям, например левитации сверхпроводника в магнитном поле – Рис.5, которые можно наблюдать уже сейчас и которые несут с собой фантастические возможности в будущем.

Рис. 5: Магнит, левитирующий над высокотемпературным сверхпроводником, охлаждаемым жидким азотом.

Однако, равенство B = 0 не относится к тонкому поверхностному слою тела. В действительности, как мы увидим в дальнейшем, магнитное поле проникает в сверхпроводник на некоторую глубину, большую по сравнению с межатомными расстояниями (обычно ∼10−5 см), зависящую от рода металла и от температуры. По этой же причине равенство B = 0 вообще не имеет места в тонких металлических пленках или малых частицах, толщина или размеры которых порядка величины глубины проникновения.