Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тихомиров П.М. Расчет трансформаторов.doc
Скачиваний:
674
Добавлен:
17.02.2016
Размер:
7.38 Mб
Скачать

1. 1. В магнитных системах трансформаторов мощностью от 100 000 кВ-а и более допускается индукция до 1,7 Тл.

2. 1, При горячекатаной стали в магнитных системах масляных трансформато. Ров индукция до 1,4—1,45, сухих — до 1,2—1,3 Тл.

Холоднокатаная электротехническая текстурованная сталь aj трансформаторного производства выпускается также в ряде зарубе> ных стран — Англии, США, Франции, ФРГ, Швеции, Японии. Mapi этой стали можно отнести к трем основным типам: марка Мб — ста. толщиной 0,35 мм с удельными потерями при £=1,5 Тл и / = 50 1 около 1,10—1,12 Вт/кг; марка М5 — сталь толщиной 0,35—0,30 мм удельными потерями 1,07—0,97 Вт/кг и марка М4 —сталь толщи» 0,30—0,28 мм с удельными потерями 0,95—0,89 Вт/кг. Коэффициен' заполнения для этих марок стали могут быть приняты по табл. 2.2.

      1. 2.3. Конструкции магнитных систем силовых трансформаторов

Первой задачей, решаемой при проектировании магнитной системы силового трансформатора, является выбор конструктивной схемы. Плоская магнитная система (см. pис. 2.1)  может быть принята для производства на любом с временном   трансформаторном заводе.   Пространственные магнитные системы по рис. 2.6, позволяющие получить экономию электротехнической стали и уменьшение потерь холостого хода до    9—10%, применяются в трансформатоpax мощностью до 630 кВ-А. Не исключено их применение при мощностях 1000—6300 кВ-А. Для изготовления пространственных   магнитных   систем по рис. 2.6 необходимо иметь специальное оборудование для навивки и длительного   отжига   навитых   частей,   а для конструкции   по рис 2.6, б — также и для нарезки ленты переменной ширины намотки обмоток  непосредственно на магнитную  систему.

При расчете плоской магнитной системы из рулона холоднокатаной стали должен быть выбран план шихтовки пластин. Наименьшие потери и ток холостого хода могут быть получены при шихтовке с косыми стыками пластин в шести углах (рис. 2.17,а). Существенно проще технологя заготовки пластин и сборки магнитной системы по рис 2.17, б с косыми стыками в четырех и прямыми в двух углах при несколько более высоких потерях и токе холостого хода. Средней по технологической сложности и параметрам холостого хода является схема по рис. 2.17, в с косыми стыками в четырех и комбинированными «полукосыми» в двух углах. Наибольшее распостранение получила схема по рис. 2.17, б и меньшее —схемы по рис. 2.17, а и в.

Рис. 2.17. Варианты плана шихтовки магнитной системы:

а - косые стыки в шести углах; б - косые стыки в четырех и прямые - в двух углах;

в - сочетание косых стыков с комбинированными

 При расчете и конструировании  магнитной системы трансформатора в первую очередь должны быть предусмотрены: получение возможно меньших потерь тока холостого хода, минимальный расход электротехнической стали и возможно больший коэффициент заполнения сталью пространства внутри обмоток. Магнитная система (остов) служит также и механической новой трансформатора. На остове располагаются и укрепляются обмотки и отводы от обмоток, и в некоторых конструкциях на остове в процессе сборки трансформатора укрепляется крышка бака с вводами и различной арматурой.

Для того чтобы магнитная система, собранная из массы пластин тонколистовой стали, обладала достаточной устойчивостью, могла выдерживать механические силы, возникающие между обмотками при коротком замыкании, и не разваливалась при подъеме остова или активной части, ее верхнее и нижнее ярма должны быть надежно соединены механически.

Таким соединением верхних и нижних ярмовых балок в остове с плоской магнитной системой могут служить вертикальные шпильки, расположенные вне обмоток ВН (см. рис. 2.7) и достаточно от них удаленные или надежно изолированные. В масляных трансформаторах такие шпильки применяют при напряжениях обмоток ВН— 10, 35 и 110 кВ, а в сухих до 10 кВ. Вертикальные шпильки также могут быть использованы для осевой прессовки обмоток за счет небольшого сдвига вниз верхних ярмовых балок.

В масляных трансформаторах при напряжениях обмоток ВН от 150 кВ и выше и в сухих при напряжениях 10 кВ и выше предпочтительнее соединять верхние и нижние ярмовые балки прессующими пластинами стержня, положенными под бандаж по оси крайнего пакета стержня и сцепленными механически с ярмовыми балками. Чтобы избежать возникновения замкнутого магнитного контура, образованного верхними и нижними ярмовыми балками и связывающими их пластинами, эти полосы изготовляют из немагнитной стали и тщательно изолируют от ярмовых балок прокладками из электроизоляционного картона.

При наличии прессующих пластин верхние ярмовые балки не могут сдвигаться вниз и в остове с плоской магнитной системой осевая прессовка обмоток должна осуществляться прессующими кольцами - разрезными и заземленными металлическими или неразрезными из твердого диэлектрика, расположенными между обмоткой и верхним ярмом. При соединении ярмовых балок шпильками прессующие кольца обычно устанавливаются при мощностях, превышающих 1600 кВ•А. При наличии прессующих колец изоляционное расстояние от обмотки ВН до верхнего ярма увеличивается согласно примечанию 2 к табл. 4.5.

В остове с пространственной магнитной системой по рис. 2.6, а шпильки, соединяющие верхнее и нижнее ярма, пропускаются внутри стержня сквозь отверстия в его центральном пакете. В навитой конструкции по рис. 2.6, 6 механическое соединение ярм не требуется.

Поперечное сечение стержня в стержневых магнитных системах обычно имеет вид симметричной ступенчатой фигуры, вписанной в окружность (рис. 2.18). Диаметр этой окружности d называется диаметром стержня трансформатора и является одним из основных его размеров. Ступенчатое сечение стержня (и ярма) образуется сечениями пакетов пластин. При этом пакетом называется стопа пластин одного размера. Чистое сечение стали в поперечном сечении стержня или ярма называется активным сечением стержня или ярма.

Число ступеней, определяемое по числу пакетов стержня в одной половине круга, может быть различным. Увеличение числа ступеней увеличивает коэффициент заполнения площади круга kKp площадью ступенчатой фигуры, но одновременно увеличивает число типов пластин, имеющих различные размеры, чем усложняет заготовку пластин и сборку магнитной системы.

Для ориентировки в этом вопросе могут служить табл. 2.5 и 2.6, в которых приведены значения чисел ступеней в стержнях современных трехфазных масляных и сухих трансформаторов различной мощности.

 

 

Таблица 2.5. Число ступеней в сечении стержня современных трехфазных масляных трансформаторов

Показатель

Прессовка стержня расклиниванием с обмоткой, сечение стержня без каналов

Мощность трансформатора S, кВ А

До 16

16

25

40 – 100

160 - 630

1000-1600

2500 - 6300

10000

16000

25000

32000

80000

Ориенировочный диаметр стержня d, м

До 0,08

0,08

0,09

0,10-0,14

0,16-0,18

0,20

0,22

0,24-0,26

0,28-0,30

0,32-0,34

0,36-0,38

0,40-0,42

0,45-0,50

0,53-0,56

0,60-0,67

0,71-0,75

Без прес-сую-щей плас-тины

Число ступеней

1

2

3

4

5

6

6

7

8

8

8

9

9

11

14

15

16

16

Коэффици-ент kкр

0,636

0,786

0,851

0,861

0,890

0,91-0,92

0,913

0,918

0,928

0,925

0,928

 

0,929

 

0,913

 

0,922

 

0,927

 

0,927

 

0,929

 

0,931

С прес-сую-щей плас-ти-ной

Число ступеней

-

-

-

-

-

-

-

6

7

7

7

8

8

10

13

14

15

15

Коэффици-ент kкр

-

-

-

-

-

-

-

0,884

0,901

0,900

0,9-0,91

 

 

0,912

 

 

0,89-0,90

 

 

0,907

 

 

0,912

 

 

0,914

 

 

0,918

 

 

0,920

Примечания: