Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1.doc
Скачиваний:
15
Добавлен:
09.04.2015
Размер:
441.34 Кб
Скачать

3)Размеры, форма бактерий.Строение

Существуют три основные формы бактерий - шаровидная, палочковидная и спиралевидная, большая группа нитчатых бактерий объединяет преимущественно водные бактерии и не содержит патогенных видов.Шаровидные бактерии - кокки, подразделяются в зависимости от положения клеток после деления на несколько групп: 1) диплококки (делятся в одной плоскости и располагаются парами); 2) стрептококки (делятся в одной плоскости, но при делении не отделяются друг от друга и образуют цепочки); 3) тетракокки (делятся в двух взаимно перпендикулярных плоскостях, образуя группы по четыре особи); 4) саруины (делятся в трех взаимно перпендикулярных плоскостях, образуя группы кубической формы); 5) стафилококки (делятся в нескольких плоскостях без определенной системы, образуя скопления, напоминающие виноградные грозди). Средний размер кокков 1,5-1мкм.Палочковидные бактерии имеют строго цилиндрическую или овоидную форму, концы палочек могут быть ровными, закругленными, заостренными. Палочки могут располагаться попарно в виде цепочек, но большинство видов располагается без определенной системы. Длина палочек варьирует от 1 до 8 мкм.Спиралевидные формы бактерий подразделяют на виброны и спириллы. Изогнутость тел вибронов не превышает одной четверти оборота спирали. Спириллы образуют изгибы из одного или нескольких оборотов.Некоторые бактерии обладают подвижность, что отчетливо видно при наблюдении методом висячей капли или другими методами. Подвижные бактерии активно передвигаются с помощью особых органелл - жгутиков либо за счет скользящих движений.Капсула имеется у ряда бактерий и является из внешним структурным компонентом. У ряда бактерий аналогом капсуле имеется образование в виде тонкого слизистого слоя на поверхности клетки. У некоторых бактерий капсула формируется в зависимости от условий их существования. Одни бактерии образуют капсулы только в микроорганизме, другие как в организме, так и вне его, в частности на питательных средах, содержащих повышенные концентрации углеводов. Некоторые бактерии образуют капсулы независимо от условий существования. В состав капсулы большинства бактерий полимиризованные полисахариды, состоящие из пентоз и аминосахаров, урановые кислоты, полипептиды и белки. Капсула не является аморфным образованием, а определенным образом структурирована. У некоторых белков, например, пневмококков, определяет их вирулентность, а также некоторые антигенные свойства бактериальной клетки.

2. б) Строение бактериальной клеткиКлеточная стенка бактерий определяет их форму и обеспечивает сохранение внутреннего содержимого клетки. По особенностям химического состава и структуры клеточной стенки бактерии дифференцируют с помощью окрашивания по грамму.Строение у клеточной стенки различно у грамположительных и грамотрицательных бактерий. Основным слоем клеточной стенки.

Цитоплазматическая мембрана бактерии прилипает к внутренней поверхности клеточной стенки, отделяет ее от цитоплазмы и я является очень важным в функциональном отношении компонентом клетки. В мембране локализованы окислительно-восстановительные ферменты, с системой мембран связаны такие важнейшие функции клетки, как деление клетки, биосинтез ряда компонентов, хемо и фотосинтез и др. Толщина мембраны у большинства клеток составляет 7-10нм. Электрономикороскопическим метолом обнаружено, что она состоит из трех слоев: двух электронно-плотных и промежуточнно-электронно-прозрачного. В состав мембраны входят белки, фосфолипиды, микропротеины, небольшое количество углеводов и некоторых других соединений. Многие белки мембраны клетки являются ферментами, участвующие в процессах дыхания, а также в биосинтезе компонентов клетчатой стенки и капсулы. В составе мембраны также определяются пермеазы, обеспечивающие перенос в клетку растворимых веществ. Мембрана служит астрономическим барьером, она обладает избирательной полупроницаемостью и ответственна за поступление внутрь клетки питательных веществ и отходов из нее продуктов обмена.Помимо цитоплазматической мембраны, в клетке бактерии имеются система внутренних мембран, получивших название мезосом, которые, вероятно, являются производственными цитоплазматической мембраны; их строение варьирует у разных видов бактерий. Наиболее развиты мезосомы у грамположительных бактерий. Строение мезосом неоднотипно, их полиморфизм отмечаются даже у одного и того же вида бактерий. Внутренние мембран структуры могут быть представлены простыми инвагинациями цитоплазматической мембраны, образованиями в виде пузырьков или петель (чаще у грамотрицательных бактерий) в виде вакуялярных, ламелярных, тубулярных образований. Мезосомы чаще всего локализованы у клеточной перегородки, отмечается также их связь с нуклеоидом. Поскольку в мезосомах обнаружены дыхания и окислительного фосфорилирования, многие считают их аналогами митохондрий. Клеток высших. Предполагается, что мезосомы принимают участие в делении клетки, распределении дочерних хромосом в разделяющиеся клетки и спорообразовании. С мембранным аппаратом клетки связано также функции фиксации азота, хемо- и фотосинтеза. Следовательно можно полагать, что мембрана клетки играет своего рода координирующую роль в пространственной организации в пространственной координации ряда ферментных систем и органелл клетки.

Цитоплазма и включения. Внутреннее содержание клетки состоит из цитоплазмы, представляющей собой сложную смесь различных органических соединений, находящихся в коллоидном состоянии. На ультратонких срезах цитоплазмы можно обнаружить большое количество зерен, значительная часть которых является рибосомами. В цитоплазме бактерии могут содержаться клеточные включения в виде гранул гиксогена, крахмала, жировых веществ. У ряда бактерий в цитоплазме находятся гранулы волютина, состоящих из неорганических полифосфатов, метафосфатов и соединений близких к нуклеиновым кислотам. Роль волютина до конца не ясна. Некоторые авторы на основании его исчезновения при голодании клеток рассматривают валютин как запасные питательные вещества. Валютин обладает средством к основным красителям, проявляя хромофильность метохрамазию, легко вживляется в клетках в виде крупных гранул, особенно при специальных метолах окраски.Рибосомы бактерии являются местом синтеза белков в клетке в процессе которого образуются структуры, состоящие из большого числа рибосом, называемые полирибосомами или чаще пелисомами. В образовании полисом принимает участие м-РНК. По окончании синтеза данного белка полисомы вновь распадаются на одиночные рибосомы, или субъединицы. Рибосомы могут располагаться свободно в цитоплазме, но значительная их часть связана с мембранами клетки. На ультратонких срезах большинства бактерий рибосомы обнаруживаются в цитоплазме в виде гранул диаметром около 20 нм.

Наследственный материал. Бактерии обладают дискретной ядерной структурой, в связи со своеобразием строения, получившей название нуклоида неклеоиды бактерии. Содержат основное количество ДНК клетки. Они окрашиваются методом Фейльгена. Хорошо видны при окраске по романовскому-Шице, после кислотного гидролиза или в живом состоянии при фазово-контрастной микроскопии, а также на ультратонких срезах в электронном микроскопе. Нуклеоид определяется в виде компактного одиночного или двойного образования. У растущих культур нуклеоиды часто выглядят в виде раздвоенных образований, что отражает их деление. Митотического деления ядерных структур у бактерий не обнаружено. Форма нуклеоидов и их распределение в клетке весьма изменчивы и зависят от ряда причин, в том числе и от возраста культуры. На электронных микрофотографиях в местах расположения нуклеоидов видны светлые участки меньшей оптической плотности. Ядерная вакуоль не отделена от цитоплазмы ядерной оболочкой. Форма вакуоли не постоянна. Ядерные участки заполнены пучками тонких нитей, образующих сложное переплетение. В составе ядерных структур бактерий не обнаружены гистоны, предполагают, что их роль у бактерий выполняют полиамины. Ядра бактерий не похожи на ядра других организмов. Это послужило основой для выделения бактерий в группу прокариотов, в отличии от эукариотов, обладающих ядром, содержащим хромосомы, оболочку и делящиеся путем митоза. Нуклеоид бактерии соединен с мезосомой. Характер связи пока не известен. Хромосома бактерии имеет циркулярно-замкнутую структуру. Подсчитано, что длина замкнутой в кольцо ДНК клетки составляет 1100-1400мкм, а молекулярный вес 2,8*10.Жгутики и ворсинки На поверхности некоторых бактерий имеются органы движения - жгутики. Их можно обнаружить с помощью особых методов окраски, микрокопирования в темном поле или в электронном микроскопе. Жгутики имеют спиралевидную форму, причем шаг спирали специфичен для каждого вида бактерий. На основании количества жгутиков и их расположения на поверхности клетки различают следующие группы подвижных микробов: монотрихи, амфитрихи, лофотрихи и перетрихи. Монотрихи имеют один жгутик, расположенный на одном из полюсов клетки и реже субполярно или катерально. У амфитрихов на каждом полюсе клетки расположено по одному жгутики. Лофотрихи имеют пучок жгутиков на одном или двух полюсах клетки. У перетрихов жгутики расположены без определенного порядка по всему телу клетки. На поверхности некоторых бактерий (энтеробактерий), кроме жгутиков, имеются ворсинки (фимбрий, пили), видимые только под электронным микроскопом. Различают несколько морфологических типов ворсинок. Наиболее изучен первый тип (общий) и ворсинки существующие только при наличие в клетке половых факторов. Ворсинки общего типа покрывают всю поверхность клетки, состоят из белка; половых ворсинок приходится 1-4 на клетку и те и другие обладают антигенной активностью. Физиология. По химическому составу бактерии не отличаются от других организмов. В состав бактерии входят углерод, азот, водород, кислород, фосфор, сера, кальций, калий, магний, натрий, хлор и железо. Их содержание зависит от вида бактерии и условий культивирования. Обязательным химическим компонентом клеток бактерии, как и других организмов, является вода, представляющая собой универсальную дисперсионную среду живой материи. Основная часть воды находится в свободном состоянии; ее содержание различно у разных бактерий и составляет 70-85% влажного веса бактерии. Коме свободной, имеется ионная фракция воды и вода, связанная с коллоидными веществами. По составу органических компонентов клетки бактерий сходны с клетками других организмов, отличаясь однако наличием некоторых соединений. В состав бактерий входят белки, нуклеиновые кислоты, жиры, моно-, ди- и полисахариды, аминосахара и др. У бактерий имеются необходимые аминокислоты: диалициопимелиновая (содержащая еще сине-зеленых водорослий и риккетсий); N-метиллизин, входящий в состав флагеллина некоторых бактерий; D-изомеры некоторых аминокислот. Содержание нуклеиновых кислот зависит от условий культивирования, фаз роста, физиологического и функционального состояния клеток. Содержание ДНК в клетке более постоянно, нежели РНК. Нуклеотидный состав ДНК не изменяется в процессе развития бактерии, видоспецифичен и используется как один из важнейших таксономических признаков. Бактериальные липиды разнообразны. Среди них встречаются жирные кислоты, фосфолипиды, воски, стероиды. Некоторые бактерии образуют пигменты с интенсивностью, которая широко варьируется у одного и того же вида и зависит от условий выращивания. Твердые питательные среды более благоприятны для образования пигментов. По химическому строению различают каратиноидные, хиновые, меланиновые и другие пигменты, которые могут быть красного, оранжевого, желтого, коричневого, черного, синего или зеленого цвета. Чаще пигменты нерастворимы в питательных средах и окрашивают только клетки. Пигменты, растворимые в воде (пиоцианин), диффундируют в среду, окрашивая ее. К пигментам бактерий относятся также бактериохларофилл, придающий фиолетовую или зеленую окраску некоторым фотосинтезирующим бактериям. Ферменты бактерий делятся на функционирующие только внутри клетки (эндоферменты) и только вне клетки (экзоферменты). Эндоферменты в основном катализируют синтетические процессы, дыхание и т.п. Эндоферменты катализируют главным образом гидролиз высокомолекулярных субстратов до соединения с более низким молекулярным весом, способных проникать внутрь клетки. В клетке ферменты связаны с соответствующими структурами и органеллами. Например, аутолитические ферменты связаны с клеточной стенкой, окислительно-восстановительные ферменты с цитоплазматической мембраной, ферменты, связанные с репликацией ДНК с мембраной или нуклеоидом. Активность ферментов зависит от ряда условий, в первую очередь от температуры выращивания бактерий и pH среды.

2)Хим.состав клетки

Клетки микроорганизмов на 75—85 % состоят из воды и на 15—25 % из сухого вещества. В состав сухого вещества клетки входят углерод, кислород, азот, водород и минеральные элементы.Минеральные элементы содержатся в клетках микроорганизмов в количестве от 3 до 10 %. Самыми важными из них являются калий, магний, кальций, железо, фосфор и др. Минеральные вещества оказывают влияние на скорость и направление химических реакций в клетке.Углерод, азот, кислород и водород входят в состав органических веществ клетки. Важнейшая роль в жизни микроорганизмов принадлежит белкам.Белки. Белки — это сложные высокомолекулярные вещества, в состав которых входят углерод, водород и азот, а в некоторые — сера и фосфор.Все белки по строению делятся на простые (протеины) и сложные (протеиды). К простым белкам относятся альбумины (водорастворимые), глобулины (растворимые в спирте) и др., в состав их входят только аминокислоты. Простые белки выполняют роль запасных веществ. Сложные белки состоят из простого белка и добавочной группы небелковой природы. Этой группой могут быть нуклеиновые кислоты, жироподобные вещества и другие соединения.Сложные белки входят в состав ядра, цитоплазмы, рибосом, митохондрий, поэтому они имеют важное значение при размножении, обмене веществ и росте клеток. Белки образуют с водой вязкие растворы — коллоиды. Под воздействием высоких температур, кислот, щелочей, излучений и других факторов белки свертываются (денатурируют).Углеводы. Они состоят из углерода, водорода и кислорода. Углеводы разделяются на моносахариды (глюкоза, фруктоза, рибоза, ксилоза и другие) и полисахариды (крахмал, целлюлоза, гликоген и др.). Две молекулы моносахаридов, соединяясь между собой, образуют дисахариды (сахароза, мальтоза, лактоза).Непосредственно усваиваются только моносахариды глюкоза и фруктоза. Сахароза и мальтоза предварительно гидролизуются ферментами дрожжей на простые сахара. Лактоза и полисахариды дрожжами не усваиваются. Углеводы являются источником энергии клетки, а также используются для синтеза белков клетки как строительный материал. Жиры. Жиры состоят из углерода, кислорода и водорода. Они представляют собой сложные эфиры трехатомного спирта глицерина и высших жирных кислот.Жиры и жироподобные вещества (липиды) входят в состав цитоплазматической и других мембран. Они являются запасными веществами и используются клеткой для получения энергии. Жиры участвуют в построении и поддержании структуры клетки. Ферменты. Ферменты — это сложные органические вещества белковой природы, которые увеличивают скорость химических реакций, т. е. являются катализаторами. В настоящее время известно более 1000 ферментов. Ферменты осуществляют превращения веществ в клетках, связанные с обменом веществ. Микроорганизмы вырабатывают различные ферменты, в частности амилазу, мальтазу, лактазу, сахаразу. Эти ферменты расщепляют соответственно крахмал, мальтозу, молочный сахар, сахарозу и другие полисахариды. Ферменты протеазы ускоряют расщепление белков. Названия гидролитических ферментов происходят от корня слова, обозначающего вещество, на которое действует фермент, и реакций, превращение которых он ускоряет, с добавлением окончания «аза». Например: вещество — сахароза, фермент — сахараза и т. д. Каждый микроорганизм обладает определенным набором ферментов. В процессе эволюционного развития микробы приспосабливались к определенным условиям среды, в результате различные микроорганизмы обладают своеобразными ферментными системами. Ферменты условно делятся на экзоферменты и эндоферменты. Экзоферменты выделяются клеткой в среду через клеточную оболочку, расщепляют сложные соединения на более простые, доступные для усвоения. Эндоферменты не обладают способностью выделяться из клеток и содержатся .внутри клеток. К экзоферментам относятся, например, амилаза, каталаза; к эндоферментам — зимаза, представляющая собой комплекс ферментов. Температура является важнейшим фактором, от которого зависит активность ферментов. С повышением температуры увеличивается начальная скорость ферментативной реакции. Однако повышение температуры выше определенного предела может привести к потере активности (инактивации) ферментов, так как ферменты имеют белковую природу и происходит денатурация белка. Одни ферменты инактивируются при температуре 40—50 °С, другие — при температуре 70 °С, т. е. термоустойчивы, но при температуре около 100 °С почти все ферменты инактивируются.Ростовые вещества. Ростовые вещества регулируют рост клетки. К ним относятся витамины, фрагменты нуклеиновых кислот (азотистые основания) и аминокислоты. Витамины — это органические вещества, необходимые для нормального обмена веществ, так как участвуют в различных ферментативных реакциях. Витамины делятся на две группы; водорастворимые и жирорастворимые. Микроорганизмам необходимы витамины B1 (тиамин), В2 (рибофлавин), В3 (пантотеновая кислота), В6 (пиридоксин), РР (никотиновая кислота), Н (биотин) и др. Ряд витаминов входит в состав ферментов. К ростовым веществам относятся также пуриновые и пиримидиновые основания, необходимые микроорганизмам для синтеза нуклеиновых кислот, а также аминокислоты. Аминокислоты участвуют в обмене азотистых веществ всех организмов. Аминокислоты являются фрагментами (мономерными звеньями), из которых состоит белок. Таких аминокислот 20. Большинство микроорганизмов синтезируют необходимые им аминокислоты, а некоторые нуждаются в готовых аминокислотах.

4) Питание. Все живые существа, в том числе и микробы, характеризуются наличием беспрерывного обмена веществ с ок-ружающей их внешней средой, из которой они получают нее необходимые питательные вещества и в которую выделяют продукты своей жизнедеятельности. Питание является жизненно важной функцией микробов. В процессе питания клетки получают вещества, необходимые для обновления составных частей тела и выделения энергии.В зависимости от типа питания и использования разных источников углерода и азота микроорганизмы делят на прототрофных и гетеротрофных. Прототрофные, или автотрофные микробы способны создавать органические вещества из неорганических, при этом усваивают углекислоту (СО.). В процессе синтеза органических веществ используются энер-гия, освобождающаяся при реакциях окисления некоторых минеральных соединений (аммиак, аммонийные соли, соли азотистой А азотной кислоты, сероводород, закисные соли железа и др.). Происходит это путем хемосинтеза. У некоторых видов микробов органические вещества образуются, как и у растений, путем фотосинтеза за счет энергии солнечных лучей. В эту группу входят многие почвенные бактерии - нитрифицирующие, азотфиксирующие, железобактерии, серобактерии и др. Гетеротрофные микробы для синтеза используют углерод готовых органических соединений: углеводов, спиртов, органических кислот. Среди этих микроорганизмов различают метатрофных и паратрофных. Метатрофные микробы (гнилостные бактерии; дрожжи и многие виды плесневых грибов) для своей жизнедеятельности используют органические субстраты мертвых остатков растений и животных, поэтому их называют еще сапрофитами. Паратрофные микробы приспособились к паразитированию и в большинстве своем являются возбудителями инфекционных болезней человека, животных и растений. Для своего питания используют органические вещества живых тканей. Минеральные вещества нужны микроорганизмам в сравнительно малых количествах. Железо используется мик-робами в процессе дыхания, для образования ферментов и для активного роста; фосфор и сера усваиваются в форме органических соединений. Кальций и магний являются важными элементами для нормального обмена веществ. Дли развитии микроорганизмом необходимы микроэлементы (медь, марганец, цинк, бор, никель, кобальт, фтор и др.), витаминоподобные вещества, стимуляторы роста.Микробы не имеют специальных органов пищеварения, и питательные вещества воспринимаются всей поверхностью их тела, через полупроницаемую оболочку. Они могут поступать м растворенном виде, при этом важную роль играют явлении абсорбции, осмоса и диффузии. Разница концентрации растворов во внешней и внутренней средах клетки служит главной движущей силой, способствующей проникновению веществ в клетку и выведению их из нее. Чем больше разница концентрации растворов, тем интенсивнее и быстрее питательные вещества проникают в полупроницаемые оболочки. Минеральные соединения и вещества простого молекулярного строения поступают легче, чем сложные. Высокомолекулярные соединения (белки, клетчатка, крахмал) через оболочку микробной клетки пройти не могут, так как она представляет собой активный барьер. Микробы очень чувствительны и быстро реагируют на различные изменения во внешней среде. Например, в крепких гипертонических растворах бактерии усиленно отдают воду, их цитоплазма уплотняется, сморщивается, собирается в комочек, отделяется от наружной оболочки. Это явление носит название плазмолиза. При этом нарушаются процессы обмена, задерживается размножение и наступает гибель микробов. В слабых растворах солей (гипотонических) и в дистиллированной воде у микробов наступает явление п л а з м о и т и з а , которое характеризуется усиленным поступлением воды в клетку, набуханием цитоплазмы, увеличением объема. При этом может наступить разрыв оболочки и гибель микроба. В изотонических растворах (0,85%) обмен веществ в клетках происходит нормально при умеренном внутриклеточном напряжении и достаточном тургоре; при этом набухшая цитоплазма плотно прилегает к клеточной оболочке.В обмене веществ у микробов происходит два противоположных и вместе с тем единых процесса - ассимиляции и диссимиляции.Ассимиляция, или синтез новых веществ, протекает с поглощением энергии, на что расходуется сравнительно немного питательного материала, тогда как основная масел его тратится на энергетический обмен. Энергию микробы получают в процессе дыхания.

Влияние хим.факторов на микроорганизмы

ДЕЙСТВИЕ ХИМИЧЕСКИХ ФАКТОРОВ НА МИКРООРГАНИЗМЫ

Способность ряда химических веществ подавлять жизнедеятельность микроорганизмов зависит от концентрации химических веществ и времени контакта с микробом. Дезинфектанты и антисептики дают неспецифический микробицидный эффект; химиотерапевтические средства проявляют избирательное противомикробное действие.

По механизму действия противомикробные вещества разделяются на:

а) деполимеризующие пептидогликан клеточной стенки,

б) повышающие проницаемость клеточной мембраны,

в) блокирующие те или иные биохимические реакции,

г) денатурирующие ферменты,

д) окисляющие метаболиты и ферменты микроорганизмов,

е) растворяющие липопротеиновые структуры,

ж) повреждающие генетический аппарат или блокирующие его функции.

У микроорганизмов химической деструкции прежде всего подвергаются белки и липиды цитоплазматической мембраны, белковые молекулы жгутиков, фимбрий, секс-пили, порины клеточной стенки грамположительных бактерий, связывающие белки периплазмы, протеиновые капсулы, экзотоксины, ферменты-токсины и ферменты питания. Деструкция гетерогенных полимеров (белки, полиэфиры и др.) происходит как при действии окислителей, так и при действии гидролизующих и детергентных антисептиков ( кислоты, щелочи, соли двух- и поливалентных металлов и др.). Спирты. При разведении спирт приобретает бактерицидные свойства, причем наибольшей бактерицидностью обладает 70 %-ный спирт. Более высокие концентрации свертывают белок, который выпадает на поверхности бактерий и уменьшает проникновение спирта в глубь клетки. Бактерицидность спиртов увеличивается с возрастанием молекулярной массы в ряду: метиловый -- этиловый -- пропиловый -- бутиловый -- амиловый и т.д.Поверхностно-активные вещества -- это жирные кислоты, мыла, детергенты. Все они изменяют энергетические соотношения на поверхности раздела, устремляются к поверхности раздела клетки и повреждают клеточную оболочку, не затрагивая внутренних структур клетки.Красители. К красителям с бактерицидными свойствами относят бриллиантовый зеленый, этакридин, флавакридин и др. В основе их действия лежит выраженное сродство с фосфорнокислыми группами нук-леопротеидов. Фенолы и их производные первоначально повреждают клеточную стенку, а затем и белки бактериальной клетки. Соли тяжелых металлов (свинец, медь, цинк, серебро, ртуть) и их соли оказывают коагулирующее влияние на цитоплазму либо на ферментные системы, связывая их сульфгидрильные группы. Окислители -- хлор, йод, марганцовокислый калий, перекись водорода и др., окисляют существенные компоненты цитоплазмы (сульфгидрильные группы активных белков, фенольные, тиоэтильные, индольные, аминные). Формальдегид также денатурирует белки, он убивает как вегетативные формы, так и споры. Его применяют для обезвреживания дифтерийного и столбнячного токсинов, благодаря чему они превращаются в анатоксины. Химические вещества (хлор, формальдегид, щелочи, кислоты, фенол и др.) используются в практике в качестве дезинфицирующих веществ. Дезинфекция заключается в уничтожении патогенных микробов. К ней обычно прибегают для обеззараживания помещений, скотных дворов, территории. Химиотерапевтические средства проявляют избирательное противомикробное действие.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]