Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
test_po_oborudovaniyu.docx
Скачиваний:
37
Добавлен:
02.04.2015
Размер:
275.97 Кб
Скачать

6) Вентиляция и кондиционирование воздуха

Кондиционирование воздуха — автоматическое поддержание в закрытых помещениях всех или отдельных параметров воздуха (температуры, относительной влажности, чистоты, скорости движения воздуха) с целью обеспечения оптимальных метеорологических условий, наиболее благоприятных для самочувствия людей, ведения технологического процесса, обеспечения сохранности ценностей.

Цели

Кондиционирование воздуха в помещениях предусматривается для создания и поддержания в них:

установленных нормами допускаемых условий воздушной среды, если они не могут быть обеспечены более простыми средствами;

искусственных климатических условий в соответствии с технологическими требованиями внутри помещения или части их круглогодично или в течение теплого либо холодного периода года;

оптимальных (или близких к ним) гигиенических условий воздушной среды в производственных помещениях, если это экономически оправдано увеличением производительности труда;

оптимальных условий воздушной среды в помещениях общественных и жилых зданий, административных и многофункциональных, а также вспомогательных зданий промышленных предприятий.

Кондиционирование воздуха, осуществляемое для создания и поддержания допускаемых или оптимальных условий воздушной среды, носит название комфортного, а искусственных климатических условий в соответствии с технологическими требованиями — технологического. Кондиционирование воздуха осуществляется комплексом технических решений, именуемых системой кондиционирования воздуха (СКВ). В состав СКВ входят технические средства приготовления, перемешивания и распределения воздуха, приготовления холода, а также технические средства холодо- и теплоснабжения, автоматики, дистанционного управления и контроля.

Способы кондиционирования воздуха

Цикл охлаждения

Принцип работы кондиционера аналогичен принципу работы холодильника.

Основная статья: Парокомпрессионный холодильный цикл

Необходимо отметить, что в реальных условиях обратный цикл холодильной машины состоит из более чем 4 точек: например, при применении винтового компрессора горячие сжатые пары хладагента попадают сразу не в конденсатор, а в маслоотделитель. И только оттуда направляются в конденсатор. После конденсатора жидкий хладагент, как правило, поступает в ресивер (специальный резервуар), а уже из него направляется в расширительный (дросельный) клапан.

Для нагрева воздуха в помещении кондиционеры переходят в режим работы теплового насоса — конденсатор выполняет роль испарителя, а испаритель роль конденсатора, то есть отводимая теплота конденсации используется для нагрева воздуха.

Контроль влажности воздуха

Обычно перед воздушным кондиционером ставится задача уменьшения влажности воздуха. Достаточно холодный (ниже точки росы) испарительный змеевик конденсирует водяной пар из обработанного воздуха (таким же образом, как и очень холодный напиток конденсирует водяной пар воздуха на внешней стороне стакана), отправляя воду в дренажную систему и, таким образом понижая влажность воздуха. Сухой воздух улучшает комфорт, так как он обеспечивает естественное охлаждение организма человека путём испарения пота с кожи. Обычно кондиционеры позволяют обеспечить относительную влажность воздуха от 40 до 60 процентов. Установка кондиционера с парогенератором позволяет поддерживать точное значение влажности в помещении.

Испарительные охладители

Вышеупомянутые персидские системы охлаждения были испарительными охладителями. В местах с очень сухим климатом они популярны, так как могут легко обеспечить хороший уровень комфорта. Испарительный охладитель — устройство, которое забирает воздух извне и пропускает его через влажную прокладку. Температура входящего воздуха, измеренная при помощи сухого термометра, уменьшается. Общее же «количество теплоты заключённое в воздухе» (внутренняя энергия) остаётся неизменным. Часть теплоты переходит в скрытую теплоту при испарении воды во влажных и более холодных прокладках. Такие охладители могут быть очень эффективны, если входящий воздух достаточно сухой. Также они дешевле и более надёжны и просты в обслуживании. Похожий тип охладителя, но использующий лёд для охлаждения и увлажнения воздуха, был запатентован американцем Джоном Горри Апалачиколой в 1842 году, который использовал это устройство для охлаждения пациентов в своём госпитале для больных малярией.

Естественная и искусственная система вентиляция. Системы с естественной вентиляцией не предусматривают установку электрооборудования, а функционируют за счет естественных факторов - направления и скорости ветра, разности температур и давления.

Преимуществами систем с естественной вентиляцией являются простота конструкции, низкая стоимость, надежность и долговечность благодаря отсутствию электрооборудования. Поэтому такие системы широко распространены в типовых жилых зданиях в виде вентиляционных коробов. Устанавливаются как правило на кухне или в сан.узлах.

Недостатками является зависимость от внешних факторов и отсутствие возможности регулировки работы системы вентиляции.

Искусственная система вентиляции представляет собой комплекс оборудования (вентиляторы, клапаны, нагреватели, фильтры и т.д.). Такая система вентиляции не зависит от условий окружающей среды и применяется там, где недостаточно естественной вентиляции.

Приточная и вытяжная система вентиляции. Приточная и вытяжная системы вентиляции являются одними из видов искусственной системы вентиляции помещений. Приточная система обеспечивает подачу свежего воздуха в помещение. При необходимости он может проходить фильтрацию или нагрев. Приточная система вентиляции способна при необходимости обеспечить подачу подготовленного воздуха в определенную зону помещения. Вытяжная система вентиляции предназначена для удаления из помещения отработанного, загрязненного, нагретого воздуха. Вытяжная система используется как правило, совместно с приточной. При это необходимо что бы их производительность была сбалансирована, чтобы в помещении не возникало разряжения или избыточного давления.

Местная и общеобменная система вентиляции. Местная система вентиляции используется для обеспечения притока свежего воздуха в определенные зоны помещения( местная приточная вентиляция) или отвода загрязненного воздуха от зон скопления вредных выделений(местная вытяжная вентиляция) Местная вентиляция весьма эффективна в тех случаях, когда зоны образования загрязнения воздуха локализованы. Такая система применяется в основном на производстве. Общеобменная система вентиляции используется как правило в бытовых условиях и предназначена для вентиляции всего помещения. Общеобменную вентиляцию также подразделяют на приточную и вытяжную.

Альтернативой мультизонального кондиционирования является система чиллер-фанкойл, которая широко используется в крупных зданиях. Расположение наружного блока(чиллера) на крыше упрощает монтаж системы и не портит фасад здания.

Чиллер-холодильный агрегат, предназначенный для подготовки холодной или теплой воды, которая в свою очередь охлаждает или обогревает помещение. Тепловым агентом является жидкость, подготавливаемая в чиллере и по трубопроводам поступающая в фанкойлы.

Фанкойл-это внутренний блок, состоящий из теплообменника, вентилятора, фильтра, пульта управления. Холодная или теплая жидкость поступает от чиллера к фанкойлу, который осуществляет теплопередачу с поступающим в него воздухом, прогревая или охлаждая его до нужной температуры.

Температура точки росы газа (точка росы) — это значение температуры газа, при котором водяной пар, содержащийся в газе, охлаждаемом изобарически, становится насыщенным над плоской поверхностью воды.

Точка росы определяется относительной влажностью воздуха. Чем выше относительная влажность, тем точка росы выше и ближе к фактической температуре воздуха. Чем ниже относительная влажность, тем точка росы ниже фактической температуры. Если относительная влажность составляет 100 %, то точка росы совпадает с фактической температурой.

Парокомпрессионных машин

Схемы и циклы одноступенчатых

Теоретические циклы холодильных машин изображают на термодинамических диаграммах, которые позволяют лучше понять принцип действия холодильных машин. Термодинамические диаграммы, кроме того, служат теоретической базой для расчета холодильных машин в целом и их отдельных элементов.

Наиболее распространены диаграммы давление — энтальпия (lgp-i диаграмма) и температура – энтропия (T-s-диаграмма);

Первую применяют для тепловых расчетов, вторую — для анализа термодинамической эффективности циклов. При этом используют следующие простые измеряемые параметры:

температуру t в °С или абсолютную температуру T в К;

давление p в Па или производных единицах (1 кПа= 103 Па, 1 МПа= 106Па= 10,2 кг с/ см2=10 бар);

удельный объем v в м3/кг;

плотность p= 1/v в кг/м 3, т. е. величину, обратную удельному объему.

Кроме простых измеряемых параметров, используют также сложные расчетные параметры:

энтальпию I в кДж;

энтропию S в кДж/К.

Энтальпия I— это полная энергия рабочего вещества (хладагента), зависящая от его термодинамического состояния. На диаграммах и в расчетах применяют обычно удельную энтальпию i в кДж/кг, т. е. отнесенную к единице массы хладагента.

Удельную энтальпию можно выразить как i=u+pv.

где и — внутренняя энергия хладагента, кДж/кг;

Р — абсолютное давление, Па;

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]