Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на Экзамен.docx
Скачиваний:
71
Добавлен:
30.03.2015
Размер:
3.08 Mб
Скачать
  1. Примесные полупроводники – акцептор.

Дырочные полу­провод­ни­ки. Полупроводник, леги­ро­ван­ный ак­­цепторной при­месью, на­зы­вают полу­про­во­д­­ником дырочно­го ти­­па (р-типа) проводимости или дырочным полу­провод­ником.

Дырочная проводимость создается в результате легирования по­­­­лупроводника элементами, име­ющими меньшую валентность, чем валентность атомов, из кото­рых состоит полу­про­вод­ни­к.  На­­при­­­мер, для Si и Ge, являющимися эле­мен­тами четвертой груп­пы таб­ли­­­цы Мен­де­­­леева, в качестве акцепторных примесей при­ме­ня­ют эле­­ме­н­­­ты третьей группы, как правило это 5B, 13Al, 31Ga, 49In.

Замещая узлы кристаллической решетки полупроводника, ато­­мы акцепторной примеси захватывают валентный эле­к­т­ро­н от со­­се­д­­не­го атома кремния для создания ковалентных связей с ато­ма­ми ос­­­новного ве­ще­ст­ва, превращаясь при этом в отрицательно за­­ря­­жен­­ные ионы, и уча­ст­вуют в создании дополнительных энер­ге­­ти­че­с­ких уров­ней в за­прещенной зоне полупроводника, как по­ка­­зано на рис. 1.26.

Механизм появления дырочной проводимости иллюстрируется на рис. 1.26, а. При образовании химической ковалентной связи с ато­­­­­ма­­­ми Si или Ge все три валентных электрона атома акце­п­то­р­ной при­­меси уча­­ст­ву­ют в образовании ковалентных связей. Для со­з­­­да­ния че­твертой (не­за­­вер­шен­ной)  химической связи может быть захвачен электрон из ко­ва­ле­нтных свя­­зей одного из бли­жай­­ших со­седних атомов кре­м­ния. У это­го атома, в свою оче­редь, по­я­в­ля­ет­ся незавершенная связь с со­сед­ним атомом кре­м­ния, ко­торая на­зы­ва­­ется дыркой.

У дырки су­ще­­ству­ет сла­бая эле­­к­­­­т­ро­ста­ти­чес­кая связь с атомом кремния. Эне­р­гия этой куло­но­в­с­кой свя­з­и DWa, как и в случае электронных по­лу­­про­­во­д­ни­ков, не­­велика и со­­став­ля­­­ет всего 0,01...0,07 эВ. По­э­тому  для зах­ва­та дыр­­кой элек­трона из ко­валентной связи соседнего атома  до­­­ста­то­ч­но неболь­шой эне­р­­гии, ко­торую эле­к­трон мо­жет по­лу­чить за счет тепловых ко­ле­ба­ний кри­­с­тал­­­ли­че­с­­кой ре­ше­тки. В ре­зу­льтате об­­мена электронами между со­седними атомами  дырка мо­­жет пе­ре­­мещаться по кристаллу по­лу­­про­вод­ника, осу­ществляя при при­ло­­жении внешнего эле­к­т­ри­че­с­кого по­ля ды­ро­ч­ную про­во­ди­мость.

 

На рис. 1.26, б представлена энергетическая зонная диаграмма ды­­рочного полупроводника, из которой следует, что ионизация ак­­цепторного атома происходит в результате захвата электрона из ва­­ле­нтной зоны полупроводника на энергетический уровень ак­це­­п­то­р­ной примеси с энергией Wa. Поскольку, как уже от­ме­ча­лось вы­ше, энергия образования свободной дырки невелика, то ло­кальные эне­р­ге­ти­чес­кие уровни акцепторной примеси Wa рас­положены в зап­рещенной зоне полупроводника вблизи по­то­л­ка валентной зо­ны.

 

  1. Концентрация носителей зарядов в собственном и примесном полупроводниках.

Свободными носителями заряда в полупроводниках, как правило, являются электроны, возникающие в результате ионизации атомов самого полупроводника (собственная проводимость) или атома примеси (примесная проводимость). В некоторых полупроводниках носителями заряда могут быть ионы. На рисунке 9.1 показана атомная модель кремния и энергетическая диаграмма собственного полупроводника, в котором происходит процесс генерации носителей заряда. 

При абсолютном нуле зона проводимости пустая, как у диэлектриков, а уровни валентной зоны полностью заполнены. Под действием избыточной энергии Wo , появляющейся за счет температуры, облучения, сильных электрических полей и т.д., некоторая часть электронов валентной зоны переходит в зону проводимости. Энергия Wo в случае беспримесного полупроводника, равна ширине запрещенной зоны и называется энергией активации. В валентной зоне остается свободное энергетическое состояние, называемое дыркой, имеющей единичный положительный заряд.

  При отсутствии  электрического поля дырка, как и электрон, будет совершать хаотические колебания, при этом происходят и обратные переходы электронов из зоны проводимости на свободные уровни валентной зоны (рекомбинация). Эти процессы условно показаны на рисунке 9.2.

Рис. 9.2. Процессы генерации и рекомбинации в полупроводнике

Электропроводность, возникающая под действием электрического поля за счет движения электронов и в противоположном направлении такого же количества дырок, называетсясобственной. В удельную проводимость полупроводника дают вклад носители двух типов - электроны и дырки

,

9.1

где n и n — концентрация и подвижность электронов,

p и p — концентрация и подвижность дырок.

Для собственного полупроводника концентрация носителей определяется шириной запрещенной зоны и значением температуры по уравнению Больцмана

9.2

 то есть при 0< kT <Wo переброс через запрещенную зону возможен. В собственном полупроводнике концентрация электронов ni равна концентрации дырок pi, ni = pi , ni + pi = 2ni .

Подвижность носителей заряда представляет скорость, приобретаемую свободными электронами или ионами в электрическом поле единичной напряженности

, м2/(В . с)

9.3

Подвижность дырок существенно меньше, чем подвижность электронов.. 

 

 

Наибольшая подвижность была обнаружена в антимониде индия InSb и в арсениде индия InAs.

Примесная проводимость. Поставка электронов в зону проводимости и дырок в валентную зону может быть за счет примесей, которые могут ионизоваться уже при низкой температуре. Энергия их активации значительно меньше энергии, необходимой для ионизации основных атомов вещества. Примеси, поставляющие электроны в зону проводимости, занимают уровни в запретной зоне вблизи дна зоны проводимости. Они называются донорными. Примеси, захватывающие электроны из валентной зоны, располагаются на уровнях в запретной зоне вблизи потолка валентной зоны и называются акцепторными. На рисунке 9.3 показаны энергетические диаграммы полупроводника, содержащего донорные и акцепторные примеси.

  

Примеси с энергией Wo<0.1 эВ являются оптимальными. Их относят к "мелким" примесям. Мелкие уровни определяют электропроводность полупроводников в диапазоне температур 200–400 К, "глубокие" примеси ионизуются при повышенных температурах. Глубокие примеси, влияя на процессы рекомбинации, определяют фотоэлектрические свойства полупроводников. С помощью глубоких примесей можно компенсировать мелкие. Можно получить материал с высоким удельным сопротивлением. Например, глубокими акцепторами полностью компенсировать влияние мелких донорных примесей.

В примесном полупроводнике взаимосвязь между количеством электронов и дырок подчиняется закону действующих масс n . p=ni2, где ni собственная концентрация. Таким образом, чем больше вводится электронов, тем меньше концентрация дырок. На рисунке 9.4 на энергетической диаграмме (по Ш.Я. Коровскому) показаны донорные и акцепторные уровни различных примесей в германии и кремнии.

Общее выражение для удельной электрической проводимости полупроводника с примесями можно записать так

9.4

где первый член определяет собственную, а второй примесную проводимости.