Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
pisika.docx
Скачиваний:
74
Добавлен:
18.03.2015
Размер:
110.42 Кб
Скачать

5. Основное уравнение молекулярно-кинетической теории идеальных газов

Известно, что частицы в газах, в отличие от жидкостей и твердых тел, располагаются друг относительно друга на расстояниях, существенно превышающих их собственные размеры. В этом случае взаимодействие между молекулами пренебрежимо мало и кинетическая энергия молекул много больше энергии межмолекулярного взаимодействия. Для выяснения наиболее общих свойств, присущих всем газам, используют упрощенную модель реальных газов - идеальный газ. Основные отличия идеального газа от реального газа:

1. Частицы идеального газа - сферические тела очень малых размеров, практически материальные точки.

2. Между частицами отсутствуют силы межмолекулярного взаимодействия.

3. Соударения частиц являются абсолютно упругими.

Реальные разреженные газы действительно ведут себя подобно идеальному газу. Воспользуемся моделью идеального газа для объяснения происхождения давления газа. Вследствие теплового движения, частицы газа время от времени ударяются о стенки сосуда. При каждом ударе молекулы действуют на стенку сосуда с некоторой силой. Складываясь друг с другом, силы ударов отдельных частиц образуют некоторую силу давления, постоянно действующую на стенку. Понятно, что чем больше частиц содержится в сосуде, тем чаще они будут ударяться о стенку сосуда, и тем большей будет сила давления, а значит и давление. Чем быстрее движутся частицы, тем сильнее они ударяют в стенку сосуда. Мысленно представим себе простейший опыт: катящийся мяч ударяется о стенку. Если мяч катится медленно, то он при ударе подействует на стенку с меньшей силой, чем если бы он двигался быстро. Чем больше масса частицы, тем больше сила удара. Чем быстрее движутся частицы, тем чаще они ударяются о стенки сосуда. Итак, сила, с которой молекулы действуют на стенку сосуда, прямо пропорциональна числу молекул, содержащихся в единице объема (это число называется концентрацией молекул и обозначается n), массе молекулы mo, среднему квадрату их скоростей и площади стенки сосуда. В результате получаем: давление газа прямо пропорционально концентрации частиц, массе частицы и квадрату скорости частицы (или их кинетической энергии). Зависимость давления идеального газа от концентрации и от средней кинетической энергии частиц выражается основным уравнением молекулярно-кинетической теории идеального газа. Мы получили основное уравнение МКТ идеального газа из общих соображений, но его можно строго вывести, опираясь на законы классической механики. Приведем одну из форм записи основного уравнения МКТ:

P=(1/3)· n· mo· V2.

6. Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения

При выводе основного уравнения молекулярно-кинетической теории молекулам за­давали различные скорости. В результате многократных соударений скорость каждой молекулы изменяется по модулю и на­правлению. Однако из-за хаотического движения молекул все направления дви­жения являются равновероятными, т. е. в любом направлении в среднем дви­жется одинаковое число молекул.

По молекулярно-кинетической теории, как бы ни изменялись скорости молекул при столкновениях, средняя квадратичная скорость молекул массой m0 в газе, на­ходящемся в состоянии равновесия при Т = const, остается постоянной и равной <vкв> =Ö3kT/m0. Это объясняется тем, что в газе, находящемся в состоянии равновесия, устанавливается некоторое стационарное, не меняющееся со временем распределение молекул по скоростям, ко­торое подчиняется вполне определенному статистическому закону. Этот закон теоре­тически выведен Дж. Максвеллом.

При выводе закона распределения мо­лекул по скоростям Максвелл предпола­гал, что газ состоит из очень большого числа N тождественных молекул, находя­щихся в состоянии беспорядочного тепло­вого движения при одинаковой температу­ре. Предполагалось также, что силовые поля на газ не действуют.

Закон Максвелла описывается некото­рой функцией f(v), называемой функцией распределения молекул по скоростям.Ес­ли разбить диапазон скоростей молекул на

малые интервалы, равные dv, то на каж­дый интервал скорости будет приходиться некоторое число молекул dN(v),имеющих скорость, заключенную в этом интервале. Функция f(v) определяет относительное число молекул dN (v)/N,скорости которых лежат в интервале от v до v+dv, т. е.

откуда

f(v)=dN(v)/Ndv

Применяя методы теории вероятно­стей, Максвелл нашел функцию f(v) — закон для распределения молекул идеаль­ного газа по скоростям:

Из (4.1) видно, что конкретный вид фун­кции зависит от рода газа (от массы моле­кулы) и от параметра состояния (от тем­пературы Т).

Скорость, при которой функция рас­пределения молекул идеального газа по скоростям максимальна, называется наи­более вероятной скоростью. Значение наи­более вероятной скорости можно найти продифференцировав выражение (4.1) (постоянные множители опускаем) по ар­гументу v, приравняв результат нулю и ис­пользуя условие для максимума выраже­ния f(v):

Значения v=0 и v=¥ соответствуют минимумам выражения (4.1), а значе­ние v, при котором выражение в скобках становится равным нулю, и есть искомая наиболее вероятная скорость vв:

Из формулы (4.2) следует, что при повышении температуры максимум функ­ции распределения молекул по скоростям сместится вправо (значение наи­более вероятной скорости становится больше). Однако площадь, ограниченная кривой, остается неизменной, поэтому при повышении температуры кривая распреде­ления молекул по скоростям будет растя­гиваться и понижаться.

Средняя скорость молекулы <v> (средняя арифметическая скорость)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]