Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
12-23.docx
Скачиваний:
170
Добавлен:
12.03.2015
Размер:
378.37 Кб
Скачать

15. Запаздывание в объектах и регуляторах

В реальных объектах (регуляторах) изменение регулируемого параметра начинается не сразу после нанесения возмущения, а спустя некоторое время. Это время называют запаздыванием. Различают 2 вида запаздывания: чистое (транспортное) – τ0; ёмкостное - τё.

В одноёмкостном объекте имеется только чистое запаздывание τ0. Оно вызывается наличием в регулируемом объекте участков, по которым распространение сигнала требует некоторого времени.

В многоёмкостном, (двух и более объектов), кроме чистого имеется еще и ёмкостное запаздывание τё. Оно обусловлено гидравлическими тепловыми и другими сопротивлениями. Эти сопротивления вызывают замедленный переход вещества из одной емкости в другую.

Рассмотрим динамическую характеристику одноёмкостного объекта с самовыравниванием с учётом запаздывания (рис. 2.9).

Рис. 2.9. Динамическая характеристика одноёмкостного объекта с самовыравниванием с учётом запаздывания.

Как следует из рис.2.9 кривая разгона смещается вправо на время чистого (транспортного) запаздывания τ0

16. Влияние ёмкости объекта на величину постоянной времени

Рассмотрим влияние ёмкости объекта на величину постоянной времени То. Возьмём одну и ту же порцию тепла и забросим её в лекционный зал, а затем её же в собачью будку. Считаем, что температуры в этих помещениях вначале были одинаковы. Так как объём будки меньше ёмкости зала, то в будке температура установится быстрее, чем в зале. Кроме того, установившаяся температура в будке будет выше, чем установившаяся температура в зале при одной и той же заброшенной порции тепла. При построении динамических характеристик этих помещений получим То будки < То зала (рис.2.5). Следовательно, чем меньше ёмкость объекта, тем меньше постоянная времени То.

Рис. 2.5. Динамические характеристики объектов c самовыравниванием.

17. Автоматический регулятор – это совокупность устройств, при помощи которых автоматически поддерживается значение регулируемой величины с той или иной точностью по отношению к заданному значению. По роду используемой энергии регуляторы подразделяют на:

  1. пневматические; гидравлические; электрические; электрогидравлические.

Рассмотрим смысл закона регулирования регулятора на примере САР температуры целевого продукта в теплообменнике. Эта схема нам уже известна. Это САР по отклонению. Здесь σ – сигнал рассогласования 90º – 100º = –10 ºС = σ. Закон регулирования регулятора (контроллера) определяет характер перемещения затвора регулирующего органа в новое положение.

На место регулятора (контроллера) в данной схеме будем поочередно ставить линейные регуляторы и будем наблюдать, как регулирующее воздействие μ от каждого закона регулирования влияет на характер перемещения затвора регулирующего органа.

Классификация линейных регуляторов

  1. П-регулятор (пропорциональный);

  2. И-регулятор (интегральный);

  3. ПИ-регулятор (пропорционально-интегральный (изодромный));

  4. Регуляторы с предварением (с опережением):

  • ПД-регулятор (пропорционально-дифференциальный);

  • ПИД-регулятор (пропорционально-интегрально-дифференциальный).

Из нелинейных регуляторов самый популярный позиционный регулятор.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]