Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
inform.docx
Скачиваний:
40
Добавлен:
12.03.2015
Размер:
395.82 Кб
Скачать

3.Представление информации в компьютере

Любая информация (числовая, текстовая, звуковая, графическая и т.д.) в компьютере представляется (кодируется) в так называемой двоичной форме. Как оперативная, так и внешняя память, где и хранится вся информация, могут рассматриваться, как достаточно длинные последовательности из нулей и единиц. Под внешней памятью подразумеваются такие носители информации, как магнитные и оптические диски, ленты и т.п.

Единицей измерения информации является бит (BInary digiT) -- именно такое количество информации содержится в ответе на вопрос: нуль или один? Более крупными единицами измерения информации являются байт, килобайт (Kbyte), мегабайт (Mbyte), гигабайт (Gbyte) и терабайт (Tbyte). Один байт (byte) состоит из восьми бит, а каждая последующая величина больше предыдущей в 1024 раза.

Байта достаточно для хранения 256 различных значений, что позволяет размещать в нем любой из алфавитно-цифровых символов, если только мы можем ограничиться языками с небольшими алфавитами типа русского или английского. Первые 128 символов (занимающие семь младших бит) стандартизированы с помощью кодировки ASCII (American Standart Code for Information Interchange). Хуже обстоит дело с кодировками русского текста (символы русского алфавита расположены во второй половине таблицы из 256 символов) -- их несколько, а наиболее распространенные из них сейчас две -- Windows-1251 и KOI8-R.

Для кодирования всех возможных символов, используемых народами мира, одного байта мало -- необходимо использовать два последовательных (стандарт Unicode). Именно так и поступают при хранении символьных (char) значений в языке Java.

Полезно знать, что . Учитывая, что в книге среднего размера около 300000 букв, легко подсчитать, что даже не используя никаких средств сжатия информации, на жестком диске современного персонального компьютера емкостью в 20 гигабайт можно разместить большую библиотеку из почти 70000 книг.

Система счисле́ния — символическийметод записичисел, представление чисел с помощьюписьменных знаков.

Система счисления:

даёт представления множества чисел (целыхи/иливещественных);

даёт каждому числу уникальное представление (или, по крайней мере, стандартное представление);

отражает алгебраическуюиарифметическуюструктуру чисел.

Системы счисления подразделяются на позиционныенепозиционные и смешанные.

Позиционные системы счисления[править | править исходный текст]

Основная статья: Позиционная система счисления

В позиционных системах счисления один и тот же числовой знак (цифра) в записи числа имеет различные значения в зависимости от того места (разряда), где он расположен. Изобретение позиционной нумерации, основанной на поместном значении цифр, приписывается шумерам и вавилонянам; развита была такая нумерация индусами и имела неоценимые последствия в истории человеческой цивилизации. К числу таких систем относится современная десятичная система счисления, возникновение которой связано со счётом на пальцах. В средневековой Европе она появилась через итальянских купцов, в свою очередь заимствовавших её у мусульман.

Под позиционной системой счисления обычно понимается -ричная система счисления, которая определяется целым числом , называемым основанием системы счисления. Целое число без знака в -ричной системе счисления представляется в виде конечной линейной комбинации степеней числа :

, где  — это целые числа, называемые цифрами, удовлетворяющие неравенству .

Каждая степень в такой записи называется весовым коэффициентом разряда. Старшинство разрядов и соответствующих им цифр определяется значением показателя (номером разряда). Обычно в записи ненулевых чисел начальные нули опускаются.

Если не возникает разночтений (например, когда все цифры представляются в виде уникальных письменных знаков), число записывают в виде последовательности его -ричных цифр, перечисляемых по убыванию старшинства разрядов слева направо:

Например, число сто три представляется в десятичной системе счисления в виде:

Наиболее употребляемыми в настоящее время позиционными системами являются:

2 — двоичная  дискретной математике, информатике, программировании);

3 — троичная;

8 — восьмеричная;

10 — десятичная (используется повсеместно);

12 — двенадцатеричная (счёт дюжинами);

13 — тринадцатеричная;

16 — шестнадцатеричная (используется в программировании, информатике);

60 — шестидесятеричная (единицы измерения времени, измерение углов и, в частности, координат, долготы и широты).

В позиционных системах чем больше основание системы, тем меньшее количество разрядов (то есть записываемых цифр) требуется при записи числа.

В двоичной системе счисления используются всего две цифры 0 и 1. Другими словами, двойка является основанием двоичной системы счисления. (Аналогично у десятичной системы основание 10.)

Чтобы научиться понимать числа в двоичной системе счисления, сначала рассмотрим, как формируются числа в привычной для нас десятичной системе счисления.

В десятичной системе счисления мы располагаем десятью знаками-цифрами (от 0 до 9). Когда счет достигает 9, то вводится новый разряд (десятки), а единицы обнуляются и счет начинается снова. После 19 разряд десятков увеличивается на 1, а единицы снова обнуляются. И так далее. Когда десятки доходят до 9, то потом появляется третий разряд – сотни.

Двоичная система счисления аналогична десятичной за исключением того, что в формировании числа участвуют всего лишь две знака-цифры: 0 и 1. Как только разряд достигает своего предела (т.е. единицы), появляется новый разряд, а старый обнуляется.

Попробуем считать в двоичной системе: 0 – это ноль 1 – это один (и это предел разряда) 10 – это два 11 – это три (и это снова предел) 100 – это четыре 101 – пять 110 – шесть 111 – семь и т.д.

Перевод чисел из двоичной системы счисления в десятичную

Не трудно заметить, что в двоичной системе счисления длины чисел с увеличением значения растут быстрыми темпами. Как определить, что значит вот это: 10001001? Непривычный к такой форме записи чисел человеческий мозг обычно не может понять сколько это. Неплохо бы уметь переводить двоичные числа в десятичные.

В десятичной системе счисления любое число можно представить в форме суммы единиц, десяток, сотен и т.д. Например:

1476 = 1000 + 400 + 70 + 6

Можно пойти еще дальше и разложить так:

1476 = 1 * 103 + 4 * 102 + 7 * 101 + 6 * 100

Посмотрите на эту запись внимательно. Здесь цифры 1, 4, 7 и 6 - это набор цифр из которых состоит число 1476. Все эти цифры поочередно умножаются на десять возведенную в ту или иную степень. Десять – это основание десятичной системы счисления. Степень, в которую возводится десятка – это разряд цифры за минусом единицы.

Аналогично можно разложить и любое двоичное число. Только основание здесь будет 2:

10001001 = 1*27 + 0*26 + 0*25 + 0*24 + 1*23 + 0*22 + 0*21 + 1*20

Если посчитать сумму составляющих, то в итоге мы получим десятичное число, соответствующее 10001001:

1*27 + 0*26 + 0*25 + 0*24 + 1*23 + 0*22 + 0*21 + 1*20 = 128 + 0 + 0 + 0 + 8 + 0 + 0 + 1 = 137

Т.е. число 10001001 по основанию 2 равно числу 137 по основанию 10. Записать это можно так:

100010012 = 13710

Почему двоичная система счисления так распространена?

Дело в том, что двоичная система счисления – это язык вычислительной техники. Каждая цифра должна быть как-то представлена на физическом носителе. Если это десятичная система, то придется создать такое устройство, которое может быть в десяти состояниях. Это сложно. Проще изготовить физический элемент, который может быть лишь в двух состояниях (например, есть ток или нет тока). Это одна из основных причин, почему двоичной системе счисления уделяется столько внимания.

Перевод десятичного числа в двоичное

Может потребоваться перевести десятичное число в двоичное. Один из способов – это деление на два и формирование двоичного числа из остатков. Например, нужно получить из числа 77 его двоичную запись:

77 / 2 = 38 (1 остаток) 38 / 2 = 19 (0 остаток) 19 / 2 = 9 (1 остаток) 9 / 2 = 4 (1 остаток) 4 / 2 = 2 (0 остаток) 2 / 2 = 1 (0 остаток) 1 / 2 = 0 (1 остаток)

Собираем остатки вместе, начиная с конца: 1001101. Это и есть число 77 в двоичном представлении. Проверим:

1001101 = 1*26 + 0*25 + 0*24 + 1*23 + 1*22 + 0*21 + 1*20 = 64 + 0 + 0 + 8 + 4 + 0 + 1 = 77

Шестнадцатеричная система счисления, так же как и восьмеричная, широко используется в компьютерной науке из-за легкости перевода в нее двоичных чисел. При шестнадцатеричной записи числа получаются более компактными.

В шестнадцатеричной системе счисления используются цифры от 0 до 9 и шесть первых латинских букв – A (10), B (11), C (12), D (13), E (14), F (15).

При переводе двоичного числа в шестнадцатеричное, первое разбивается на группы по четыре разряда, начиная с конца. В случае, если количество разрядов не делится нацело, то первая четверка дописывается нулями впереди. Каждой четверке соответствует цифра шестнадцатеричной системе счисления:

Например: 10001100101 = 0100 1100 0101 = 4 C 5 = 4C5

Если потребуется, то число 4C5 можно перевести в десятичную систему счисления следующим образом (C следует заменить на соответствующее данному символу число в десятичной системе счисления – это 12):

4C5 = 4 * 162 + 12 * 161 + 5 * 160 = 4 * 256 + 192 + 5 = 1221

Максимальное двухразрядное число, которое можно получить с помощью шестнадцатеричной записи - это FF.

FF = 15 * 161 + 15 * 160 = 240 + 15 = 255

255 – это максимальное значение одного байта, равного 8 битам: 1111 1111 = FF. Поэтому с помощью шестнадцатеричной системы счисления очень удобно кратко (с помощью двух цифр-знаков) записывать значения байтов. Внимание! Состояний у 8-ми битного байта может быть 256, однако максимальное значение – 255. Не забывайте про 0 – это как раз 256-е состояние.

. Единицы представления, измерения, хранения и передачи  данных

Одной из систем представления данных, принятых в информатике и вычислительной технике является система двоичного кодирования. Наименьшей единицей такого представления является бит (двоичный разряд).

Совокупность двоичных разрядов, выражающих числовые или иные данные, образует некий битовый рисунок. С битовым представлением удобнее работать, если этот рисунок имеет регулярную форму. В качестве таких форм используются группы из 8 битов, каждая из которых называются байтом. Однако во многих случаях целесообразно использовать 16 – разрядное, 24 – разрядное, 32 – разрядное, 64 – разрядное кодирование.

Байт является наименьшей единицей измерения количества данных (информации).

Более крупные единицы измерения данных образуются добавлением префиксов кило-, мега-, гига-, тера-.

1 Килобайт (Кбайт) = 1024 байт = 210 байт.

1 Мегабайт (Мбайт) = 1024 Кбайт = 220 байт.

1 Гигабайт (Гбайт) = 1024 Мбайт = 230 байт.

1 Терабайт (Тбайт) = 1024 Гбайт = 240 байт.

В более крупных единицах пока нет практической надобности.

В качестве единицы хранения данных (информации) принят объект переменной величины, называемый файлом

Файл – это последовательность произвольного числа байтов, обладающая уникальным собственным именем.

Поскольку в определении файла нет ограничений на его размер, то можно представить себе файл, имеющий 0 байтов (пустой файл), и файл, имеющий любое число байтов. В определении файла особое внимание уделяется имени. Имя файла фактически несёт в себе адресные данные, без которых, данные, хранящиеся в файле, не станут информацией из-за отсутствия методов доступа к ним. Кроме адресных функций, имя файла может хранить сведения о типе данных, заключённых в нём.

Требование уникальности имени файла в вычислительной технике обеспечивается автоматически – создать файл с именем, тождественным уже существующему, не может ни пользователь, ни автоматика. Уникальность имени файла обеспечивается тем, что полным именем файла считается собственное имя файла вместе с путём доступа к нему.

Хранение файлов организуется в иерархической структуре, которая называется файловой структурой, В качестве вершины структуры служит имя носителя, на котором сохраняются файлы. Далее файлы группируются в каталоги (папки), внутри которых могут быть созданы вложенные каталоги (папки). Путь доступа к файлу начинается с имени устройства и включает все имена каталогов (папок), через которые проходит. В качестве разделителя используется символ “\“ (обратная косая черта).

Синтаксис записи полного имени файла:

Имя носителя \ Имя каталога 1 \ Имя каталога N \ Собственное имя файла .

Пример: C\Игры\Стрелялки\Кролики.

Передача данных в компьютерных системах измеряется её скоростью. Единицей измерения скорости передачи данных через последовательные порты является: бит в секунду (бит/с, Кбит/с, Мбит/с). Единицей измерения скорости передачи данных через параллельные порты является байт в секунду (байт/с, Кбайт/с, Мбайт/с).

Назначение и состав устройств персонального компьютера

Персональный компьютер (ПК) предназначен для хранения и переработки информации. Информация может представлять собой текст, таблицы, рисунки, фотографии, звукозаписи и т. п. Информация хранится и обрабатывается в цифровом виде. Единица измерения информации - байт. Один байт (1б) соответствует примерно одному символу текста. Для удобства введены также более крупные единицы измерения информации: килобайт (Кб), мегабайт (Мб), гигабайт (Гб).

Современный ПК включает в себя следующие элементы:

системный блок;

монитор;

клавиатура;

мышь;

принтер;

сканер.

Кроме перечисленных, в состав ПК могут входить модем или факс-модем, плоттер, устройства воспроизведения и записи звука и некоторые другие устройства.

Системный блок

В системном блоке размещаются основные устройства ПК, осуществляющие переработку и хранение информации. Непосредственно переработку информации производит процессор, размещенный на материнской плате системного блока. Основная характеристика процессора - его быстродействие, иначе называемое «тактовая частота». Единица измерения тактовой частоты - мегагерц (МГц), Современные офисные ПК оснащены процессорами с тактовой частотой 200...400 МГц. Кроме того, на материнской плате системного блока расположено оперативное запоминающее устройство (ОЗУ), или оперативная память1. ОЗУ хранит информацию, в данный момент перерабатываемую процессором. Необходимо отметить, что информация в оперативной памяти хранится только при включенном ПК. После выключения ПК вся информация из ОЗУ пропадает. Основная характеристика ОЗУ - объем хранимой информации. Современные офисные ПК оснащены ОЗУ объемом 32...64 Мб. Постоянное хранение информации производится на жестком диске2, который также называют «винчестер». Основная характеристика жесткого диска - объем хранимой информации. Современные офисные ПК оснащены жестким диском объемом 3...7 Гб. Для работы с внешними носителями информации системный блок имеет 1 или 2 дисковода для дискет3, а также устройство для работы с лазерными компакт-дисками4. В последнее время используются почти исключительно дискеты размером 3,5" с объемом хранимой информации 1,44 Мб. Иногда еще встречаются дискеты размером 5" с объемом хранимой информации до 1,2 Мб. Компакт-диск может содержать информацию объемом до 640 Мб. Кроме перечисленных устройств, в системном блоке расположены и другие устройства, обеспечивающие работу ПК: блок питания, видеоплата, контроллеры, платы управления внешними устройствами.

Монитор

Монитор служит для отображения информации. Подавляющее число современных мониторов цветные. Большинство мониторов оснащено электронно-лучевой трубкой и работает по принципу телевизора. Монитор имеет собственную кнопку включения и выключения, а также кнопки или регуляторы для настройки яркости, контрастности и размера изображения. Современные офисные ПК имеют мониторы с размером экрана по диагонали 15" (38 см) или 17" (43 см).

Клавиатура

Клавиатура предназначена для ввода информации и управления ПК. В настоящее время чаще всего используются так называемые «стандартные клавиатуры 101/102 клавиши». На клавиатуре имеются алфавитно-цифровые клавиши, предназначенные для ввода букв, цифр, знаков препинания, некоторых математических и специальных символов. Расположение алфавитно-цифровых клавиш соответствует стандартной пишущей машинке. Ввод прописных букв производится при нажатой клавише [Shift]. Для переключения клавиатуры в верхний регистр используют клавишу [CapsLock]. Включение этой клавиши отмечается индикатором в правом верхнем углу клавиатуры. Для подтверждения выбранной команды, перехода к новому абзацу при вводе текста используют клавишу [Enter]. Для отказа от выполнения — клавишу [Esc]. Для перемещения курсора используют клавиши , , , , [Home], [End], [PageDown], [PageUp]. Для удаления символа слева от курсора используют клавишу [Backspace], расположенную над клавишей [Enter]. Часто на клавиатуре вместо названия этой клавиши изображена стрелка влево [<-]. Для удаления выделенного объекта или удаления символа справа от курсора используют клавишу [Delete]. Клавиши [Ctrl] и [Alt] используют, как правило, в комбинации с другими клавишами. Функциональные клавиши от [F1] до [F12] могут иметь разное назначение, в зависимости от используемой в данный момент программы. Однако, клавиша [F1] практически во всех случаях вызывает справочную систему.

Мышь

Мышь предназначена для перемещения курсора по экрану и управления различными объектами. В настоящее время чаще всего встречаются двухкнопочные мыши.

Принтер

Принтеры служат для вывода документов на бумагу. В современном офисе чаще всего используют лазерные принтеры. Лазерный принтер позволяет печатать до 10 страниц в минуту, обеспечивая высокое качество печати. Струйные принтеры работают медленнее, качество печати на них ниже. В то же время, струйные принтеры обеспечивают сравнительно недорогую многоцветную печать. Матричные принтеры в современных офисах практически не используются.

Сканер

Сканер предназначен для ввода в ПК рисунков, фотографий, схем и других изображений. Помимо этого, сканер, при наличии специальной программы, позволяет вводить и распознавать текстовые материалы. В настоящее время повсеместно используют планшетные сканеры. Ручные сканеры уже практически не встречаются.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]