Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекц__Метрология.doc
Скачиваний:
431
Добавлен:
12.03.2015
Размер:
1.87 Mб
Скачать

6.3.3. Экспоненциальные распределения

Экспоненциальные распределения описываются формулой [4]

(6.5)

где ; — СКО;  — некоторая характерная для данного распределения константа; Хц — координата центра; Г(х) — гамма-функция. В нормированном виде, т.е. при Хц = 0 и  = 1,

где А(а) — нормирующий множитель распределения.

Интегральная функция нормированного экспоненциального распределения описывается выражением

Интеграл, входящий в эту формулу, выражается через элементарные функции только при  = 1/n, n = 1; 2; 3; ... При  = n = 2; 3; 4; ... он может быть рассчитан по приближенным формулам, приведенным в [53].

Эксцесс и энтропийный коэффициент экспоненциальных распределений соответственно определяются по формулам:

Анализ приведенных выражений показывает, что константа а однозначно определяет вид и все параметры распределений. При  < 1 распределение имеет очень пологие спады и по форме близко к распределению Коши. При  = 1 получается распределение Лапласа р(х) = 0,5е-|x| , при  = 2 — нормальное распределение или распределение Гаусса. При  > 2 распределения, описываемые формулой (6.5), близки по свойствам к трапецеидальным. При очень больших значениях  формула (6.5) описывает практически равномерное распределение. В табл. 6.3 приведены параметры некоторых из экспоненциальных распределений.

Таблица 6.3

Значения параметров экспоненциальных распределений

при различных показателях a

Распределение

a

e

к

k

Лапласа

1

6

0.408

1,92

Нормальное (Гаусса)

2

3

0,577

2,07

Равномерное

¥

1,8

0,745

1,73

6.3.4. Нормальное распределение (распределение Гаусса)

Наибольшее распространение получил нормальный закон распределения, называемый часто распределением Гаусса:

(6.6)

где  — параметр рассеивания распределения, равный СКО; Хц — центр распределения, равный МО. Вид нормального распределения показан на рис. 6.3.

Рис. 6.6. Экспоненциальные распределения, определяемые по

формуле (6.5) при  = 1 и Хц = 0

Широкое использование нормального распределения на практике объясняется центральной предельной теоремой теории вероятностей [48, 49], утверждающей, что распределение случайных погрешностей будет близко к нормальному всякий раз, когда результаты наблюдений формируются под действием большого числа независимо действующих факторов, каждый из которых оказывает лишь незначительное действие по сравнению с суммарным действием всех остальных.

6.3.6. Семейство распределений Стъюдента

Эти законы описывают плотность распределения вероятности среднего арифметического, вычисленного по выборке из n случайных отсчетов нормально распределенной генеральной совокупности. Распределения Стьюдента нашли широкое применение при статистической обработке результатов многократных измерений. Их вид зависит от числа отсчетов n, по которым находится среднее арифметическое значение.

Контрольные вопросы.

1. При каких условиях погрешность измерения может рассматриваться как случайная величина?

2. Перечислите свойства интегральной и дифференциальной функций распределения случайной величины.

3. Назовите числовые параметры законов распределения.

4. Каким образом может задаваться центр распределения?

5. Что такое моменты распределения? Какие из них нашли применение в метрологии?

6. Назовите основные классы распределений, используемых в метрологии.

7. Дайте характеристику распределениям, входящим в класс трапецеидальных распределений.

8. Что такое экспоненциальные распределения? Каковы их свойства и характеристики?

9. Что такое нормальное распределение? Почему оно играет особую роль в метрологии?

10. Что такое функция Лапласа и для чего она используется?

11. Как описывается и где используется семейство распределений Стьюдента?

12. Какие точечные оценки законов распределения вы знаете? Какие требования предъявляются к ним?

13. Что такое доверительный интервал? Какие "способы его задания вам известны?