Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
часть 1.doc
Скачиваний:
182
Добавлен:
13.02.2015
Размер:
2.93 Mб
Скачать

Контрольные вопросы

  1. Уравнение Клапейрона-Менделеева.

  2. Первое начало термодинамики.

  3. Выражение для внутренней энергии идеального газа через число степеней свободы.

  4. Виды теплоемкостей.

  5. Значения молярных теплоемкостей при изопроцессах (V=const, p=const, T=const) и при адиабатическом процессе.

  6. Уравнение Пуассона для адиабатического процесса.

  7. Природа звука в газе.

  8. Расчетная формула для нахождения по скорости звука в газе.

  9. Способы измерения скорости звука по резонансу в воздушном столбе.

Лабораторная работа №3

Определение коэффициента вязкости жидкости

Основные понятия и определения:понятие идеальной и реальной жидкости, коэффициент вязкости и единицы его измерения; понятия ньютоновской и неньютоновской жидкостей; гидравлическое сопротивление; число Рейнольдса, кинематическая вязкость.

Цель работы:определять коэффициент вязкости жидкостей; оценивать погрешности измерений.

Краткая теория

Предмет гидродинамики и реологии.

Уравнение Бернулли для идеальной жидкости

Актуальность изучения гидродинамики и в частности гемодинамики обусловлена, прежде всего, тем, что обеспечение жизнедеятельности тканей, органов связано с кровообращением. Нарушения в системе кровообращения, тромбозы являются причиной многих заболеваний. В нашей и многих других странах мира более 50% смертельных исходов связано с сердечно-сосудистыми заболеваниями (ишемическая болезнь сердца, головного мозга, конечностей, инфаркт миокарда, инсульт, гипертензии различной этиологии, диссеминированное внутрисосудистое свертывание крови и многие другие).

Жидкости занимают промежуточное положение между газами и твердыми телами. Жидкие среды составляют большую часть организма, поэтому изучение механических свойств и течения жидкостей является весьма актуальным для медицины.

В гидродинамике изучаются вопросы движения несжимаемой жидкости и взаимодействие их при этом с окружающими телами. Реальные жидкости малосжимаемы, поэтому можно говорить приблизительно об их несжимаемости.

Реологиейназывают учение о деформируемости и текучести вещества (в том числе и жидкости) и совокупность методов их исследования.

В гидродинамике и гемодинамике важным параметром является объемная скорость течения жидкости Q = V/t.

Для стационарного ламинарного течения идеальной (не имеющей внутреннего трения) и несжимаемой жидкости по трубам переменного сечения справедливо два основных уравнения гидродинамики:

1. Объемная скорость течения жидкости - уравнение неразрывности струи, где:υ- скорость жидкости,S - площадь сечения трубы.

2. -уравнениеБернулли, согласно которому полное давление жидкости одинаково во всех точках линии тока, где:-гидростатическое,P - статическое,- динамическое давления жидкости.

Вязкость жидкости

В реальной жидкости все закономерности течения жидкости усложняются вследствие наличия сил внутреннего трения – вязкости. При движении жидкости по трубе скорость различных слоев будет разной (рис.1).

Рисунок 1. Слоистое, ламинарное течение вязкой жидкости по цилиндрической трубе с градиентом скорости между слоями жидкости dυ/dx

С наибольшей скоростью движутся слои в середине трубки, с наименьшей – слои, приближающиеся к стенке. Между слоями образуется градиент скорости: , где- расстояние между соседними движущимися слоями с разностью скоростей. Наличие градиента скорости обусловлено передачей количества движения от слоя к слою за счет сил трения между слоями. Согласно закону Ньютона градиент скорости пропорционален возникающим при этом силам внутреннего трения, действующим на единицу площади соприкасающихся слоев:, откуда сила внутреннего трения между слоями жидкости равна.

Коэффициент пропорциональности , называемый коэффициентомдинамической вязкости(или простовязкостью жидкости), зависит от природы и состояния жидкости и с повышением температуры обычно уменьшается.

За единицу вязкости в международной системе единиц СИ принимается 1 Па.с– это вязкость такой среды, в которой при градиенте скорости между слоями жидкости равном-1и площадью слоя в2, действует сила трения между этими слоями жидкости1 Ньютон.

, . (1)

У большинства жидкостей (вода, низкомолекулярные органические соединения, расплавленные металлы и их соли и др.) коэффициент вязкости зависит только от природы жидкости и температуры. Такие жидкости называются ньютоновскими. У некоторых жидкостей, преимущественно высокомолекулярных (например, растворы полимеров) или представляющих дисперсные системы (суспензии и эмульсии), коэффициент вязкости зависит также от режима течения (давления, градиента скорости и т.д.). Такие жидкости называютненьютоновскимиилиструктурно – вязкими. Их вязкость характеризуют так называемымусловным коэффициентом вязкости, который относится к определенным условиям течения жидкости (давление, градиент скорости).

Кровь представляет суспензию форменных элементов в белковом растворе – плазме и является неньютоновской жидкостью. Кроме того, при течении крови по многим сосудам наблюдается концентрация форменных элементов в центральной части потока, где вязкость соответственно увеличивается. В ряде случаев при анализе гемодинамики считают коэффициент вязкости крови приблизительно постоянной средней величиной по всему сечению кровеносного сосуда.

Относительная вязкость крови (относительно дистиллированной воды) в норме составляет 4,2 – 6. При патологии она может снижаться, например, до 2 – 3 при анемии или повышаться до 15 – 20 при полицитемии. Относительная вязкость сыворотки крови в норме составляет 1,64 – 1,69, а при различных видах патологии обычно находится в пределах 1,5 – 2,0.

В данной лабораторной работе экспериментально изучается ряд методов определения коэффициента вязкости жидкостей.

Рассмотрим некоторые методы определения коэффициента вязкости жидкости.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]