Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
занятие 1,2,3.doc
Скачиваний:
194
Добавлен:
11.02.2015
Размер:
645.63 Кб
Скачать

Формы бактерий

Нитевидные

Форма

микрорганизмов

Шаровидные

Палочки

Извитые

стафилококки

По форме концов:

  1. закругленные

  2. заостренные

  3. утолщенные

  4. обрезанные

стрептококки

диплококки

Несмотря на то, что термин «микроорганизмы» подразумевает малые размеры, этот признак варьирует в довольно широких пределах. Размеры большинства прокариот находятся в пределах 0,2-10,0 мкм. Однако среди них есть и «карлики», например – микоплазмы (0,05 мкм). При микроскопии возможно измерение размера бактериальной клетки. Оно производится с помощью либо калиброванного окуляра-микрометра, либо филярного микрометрического окуляра. Окуляр-микрометр, состоящий из стеклянного диска, на котором имеется ряд регулярно расположенных условно обозначенных отметок, устанавливается поверх полевой диафрагмы окуляра после отвинчивания верхней части. Объект-микрометр— это стеклянная пластинка, специально размеченная линиями, отстоящими друг от друга ровно на 10 мкм; при наведении на фокус линии окуляра-микрометра накладываются на линии объекта-микрометра. Если, к примеру, между двумя соседними линиями последнего помещается 10 линий окуляра-микрометра, то каждый просвет между ними равен 1,0 мкм. После калибровки объект-микрометр больше не нужен, но для каждого применяемого объекта калибровку следует проводить заново.

Вопросы для самоконтроля.

Тема 2. Структура бактериальной клетки. Постоянные и непостоянные структуры бактерий. Особенности строение клеточной стенки бактерий.

Схема строения типичной прокариотической клетки приведена на рис.

1. Различают:

1. Поверхностные структуры:

- капсула

- клеточная стенка

- ЦПМ

- жгутики, ворсинки

2. Внутренние, входящие в протопласт.

- нуклеоид,

- рибосома,

- мезосома

-споры,

-включения,

-плазмиды и др. внехромосомные генетические структуры

Постоянные структуры:

– клеточная стенка,

- ЦПМ,

- нуклеоид, рибосома, мезосома

2. Непостоянные структуры:

- ворсинки, жгутики, капсула, споры, включения, плазмиды и др. внехромосомные генетические структуры

Клеточная стенка

Клеточная стенка — структурный компонент, присущий только бактериям (отсутствует у микоплазм).

Клеточная стенка выполняет следующие функции:

1. Определяет и сохраняет постоянную форму клетки.

2. Защищает внутреннюю часть клетки от действия механических и осмотических сил внешней среды.

3. Участвует в регуляции роста и деления клеток.

4. Обеспечивает коммуникации с внешней средой через каналы и поры.

5. Несет на себе специфические рецепторы для бактериофагов.

6. Определяет во многом антигенную характеристику бактерий (природу и специфичность О- и К-антигенов).

7. Содержащийся в ее составе пептидогликан наделяет клетку важными иммунобиологическими свойствами (см. ниже).

8. Нарушение синтеза клеточной стенки бактерий является главной причиной их L.-трансформации.

Строение клеточной стенки. В ее составе имеется два слоя: наружный — пластичный и внутренний — ригидный. Основу клеточной стенки составляет пептидогликан, который ранее называли муреином (от лат— стенка). Он имеется только у эубактерий (кроме микоплазм).

Пептидогликан включает в себя остов и два набора пептидных цепочек — боковых и поперечных.

Остов пептидогликана одинаков у всех бактерий и состоит из чередующихся молекул аминосахаров — N-ацетилглюкозамина и N-ацетилмураминовой кислоты, связанных между собой β-гликозидными связями.

Боковые цепочки в каждой молекуле пептидогликана представлены набором идентичных тетрапептидов.

Поперечные цепочки также представлены набором из идентичных для данной молекулы пептидогликана пентапептидов, содержащих глицин, — пентаглицинов, однако у разных видов бактерий боковые и поперечные пептиды различны.

Аминокислоты клеточной стенки: глутаминовая, глицин, лизин и аланин. У большинства грамотрицательных бактерий имеется диаминопимелиновая (диаминопимеловая) кислота (ДАП) — уникальный компонент клеточной стенки, обнаруженный только у прокариот.

Наличие двух типов связей (гликозидные и пептидные), которые соединяют субъединицы пептидогликанов, придает этому гетерополимеру структуру молекулярной сети. Благодаря этим связям. пептидогликановый слой клеточной стенки образует огромного размера ригидную мешковидную макромолекулу, которая окружает протопласт, уравновешивает его тургорное давление и придает ему определенную постоянную форму. Пептидогликан может разрушаться под действием различных ферментов, а его синтез блокируют бета-лактамные антибиотики. Это приводит к разрыхлению пептидогликановой сети, следствием чего является осмотический лизис растущих клеток. Пептидогликан, помимо того, что он определяет постоянную форму бактерий, обладает следующими важнейшими иммунобиологическими свойствами:

1. В его составе обнаружены родоспецифические антигенные детерминанты. Они содержатся в гликановом остове и в тетрапептидах. В межпептидных мостиках имеются видоспецифические антигенные детерминаиты.

2. Пептидогликан запускает классический и альтернативный пути активации системы комплемента.

3. Он тормозит фагоцитарную активность макрофагов, т.,е. защищает бактерии, особенно грамположительные, от фагоцитоза.

4. Угнетает миграцию макрофагов.

5. Способен индуцировать развитие гиперчувствительности замедленного действия.

6. Обладает противоопухолевым действием.

7. Оказывает пирогенное действие на организм человека и животных.

Таким образом, клеточная стенка является чрезвычайно важной биологической структурой бактерий, определяющей многие их специфические свойства.

Состав и строение клеточной стенки – важный систематический признак, по которому все прокариоты подразделяются на следующие группы: толстостенные (грамположительные – по отношению к окраске по методу Грама), тонкостенные (грамотрицательные) и без клеточной стенки.

Особенности клеточной стенки грамположительных бактерий Клеточная стенка грамположительных бактерий однослойная, представлена 5-6 рядами пептидогликана (до 90% сухой массы клеточной стенки). В пептидогликан погружены и выходят на поверхность тейхоевые кислоты (до 50% сухого веса ее). Тейхоевые кислоты — растворимые в воде линейные полимеры, содержащие остатки глицерина или рибитола (глицеринтейхоевые и рибиттейхоевые). Тейхоевые кислоты главные поверхностные антигены многих грамположительных бактерий. Они в значительном количестве располагаются между цитоплазматической мембраной и слоем пептидогликана, и через поры в нем выступают наружу. функция тейхоевых кислот полностью не выяснена. Считается, что тейхоевые кислоты придают муреиновому мешку определенную степень свободы при растяжении и сжатии и действуют наподобие пружины.

Клеточная стенка большинства грамположительных бактерий не содержит липидов, однако у микобактерий и коринебактерий в ней имеются токсические гликолипиды. Особенность пептидогликанов грамположительных бактерий частое отсутствие в них диаминопимелиновой кислоты. В клеточной стенке грамположительных бактерий отсутствуют липополисахариды; содержание белка в них сильно варьирует. Белки во многом определяют антигенную специфичность таких бактерий. Например, стрептококки серогруппы А по белкам М и Т подразделяют на несколько десятков серотипов.

Особенности клеточной стенки грамотрицательных бактерий Клеточная стенка грамотрицательных бактерий значительно тоньше (14—18 нм) и состоит из двух слоев. Первый - представлен одним или двумя рядами пептидотликана, на долю которого приходится до 5—10% сухого веса стенки. Для пептидогликана характерно низкое содержание поперечных сшивок между пептидными цепочками, однако в нем почти всегда имеется диаминопимелиновая кислота. В составе клеточной стенки содержится много липопротеинов, фосфолипидов, липополисахарид, больше белка и, как правило, отсутствуют тейхоевые кислоты. Второй слой – бислой фосфолипидов, пронизанный транспортными белками, в нем крепиться липополисахарид (ЛПС). ЛПС – включает в себя три компонента: 1. Липид А – крепит данную структуру в бислое фосфолипидов и является наиболее токсичным компонентом (эндотоксин). 2 – ядро – одинаковое у всех Гр-. 2. Полисахарид – О-специфическая цепь полисахарида – несет антигенную функцию (О-АГ).

Между клеточной стенкой и цитоплазматической мембраной находится периплазматическое пространство, или периплазма, содержащая ферменты (протеазы, липазы, фосфатазы, нуклеазы, бета-лактамазы), а также компо­ненты транспортных систем.

Способность грамположительных бактерий при окраске по Граму удерживать генциановый фиолетовый в комплексе с йодом (сине-фиолетовая окраска бактерий) связана со свойством многослойного пептидогликана взаимодействовать с красителем. Кроме этого, последующая обработка мазка бактерий спиртом вызывает суживание пор в пептидогликане и тем самым задерживает краситель в клеточной стенке. Грамотрицательные бактерии после воздействия спиртом утрачивают краситель, что обусловлено меньшим количеством пептидогликана (5—10 % массы клеточной стенки); они обесцвечиваются спиртом и при обработке фуксином приобретают красный цвет.

При нарушении синтеза клеточной стенки бактерий под влиянием лизоцима, пенициллина, защитных факторов организма и других соединений образуются клетки с измененной (часто шаровидной) формой: протопласты — бактерии, полностью лишенные клеточной стенки; сферопласты — бактерии с частично сохранившейся клеточной стенкой. После удаления ингибитора клеточной стенки такие измененные бактерии могут реверсировать, т. е. приобретать полноценную клеточную стенку и восстанавливать исходную форму

L-трансформация бактерий

Бактерии сферо- и протопластного типа, утратившие способность к синтезу пептидогликана под влиянием АБ или других факторов и способные размножаться, называются L- формами. Поскольку этот феномен был обнаружен в институте имени Листера, то таким необычным вариантам бактерий дали название L.-форм, такую изменчивость бактерий назвали L-трансформацией. Она может быть обратимой и необратимой.

1. В случае, если генетический контроль синтеза клеточной стенки сохраняется, L-формы при благоприятных условиях могут возвращаться в исходную бактериальную форму с восстановлением всех основных биологических свойств, включая патогенность.

2. Если же генетический контроль синтеза клеточной стенки нарушен необратимо, L-трансформация приобретает необратимый характер, а такие L-трансформанты по своим морфологическим, культуральным и иным свойствам становятся неотличимыми от микоплазм. L-трансформации могут подвергаться, по-видимому, все бактерии, имеющие клеточную стенку, а все образующиеся L-формы, независимо от вида бактерий, из которого они возникли, обладают следующими общими для них особенностями: 1. Сходство морфологических изменений: образование нитевидных, волокнистых, колбасовидных, шаровидных и гранулярных форм.

2. Сходные культуральные свойства: анаэробные или микроаэрофильные условия роста, потребность в холестерине и сывороточном белке, рост на плотных средах в виде характерных колоний двух типов — А иВ. Колонии типа А растут на поверхности агара, имеют очень мелкие размеры. Они состоят главным образом из гранулярных структур, лишенных клеточной стенки, и очень похожи на микоплазмы. Колонии типа В состоят из центральной зоны, врастающей в агар, и прозрачной фестончатой периферии. Они похожи по внешнему виду на колонии типа глазуньи, образуемые микоплазмами, но более крупные и грубые.

3. Постепенное (по мере нарушения синтеза клеточной стенки) превращение из грамположительных в грамотрицательные структуры.

4. Образование стабильных и нестабильных L-форм (в зависимости от степени полноты утраты способности синтезировать клеточную стенку).

5. Изменение антигенных свойств (утрата К- и 0-антигенов как следствие нарушения синтеза клеточной стенки).

6. Снижение вирулентности по сравнению с исходными родительскими формами в связи с утратой различных факторов патогенности (адгезии, инвазии, эндотоксина и т. п.).

7. Способность длительно персистировать (переживать) в организме. Утрата клеточной стенки делает L-формы нечувствительными к различным химиопрепаратам и антителам.

8. Способность при неполной утрате синтеза клеточной стенки возвращаться в исходную бактериальную форму.

Факторами, индуцирующими ее, являются различные антибиотики, угнетающие биосинтез клеточной стенки (пенициллин цефалоспорины, Циклосерин, ванкомицин и т. п.); ферменты (лизоцим, амидаза, эндопептидаза); антимикробные антитела; высокие концентрации некоторых аминокислот, особенно глицина и фенилаланина. Исключительное значение L-трансформации патогенных бактерий заключается в том, что она является частой причиной перехода острых форм заболеваний в хронические и их обострений. L-трансформацию надо рассматривать не просто как одно из проявлений изменчивости бактерий, а как своеобразную, присущую всем бактериям форму приспособления к неблагоприятным условиям существования (подобно спорообразованию), которая способствует сохранению вида бактерий в природе. Клеточная стенка и ее синтез чувствительны к действию антител и различных химиопрепаратов. Освобождение от нее не лишает бактерии жизнеспособности, но позволяет им переживать в присутствии этих неблагоприятных для них факторов, а по их устранении — возвращаться в свое исходное состояние.

Цитоплазматическая мембрана бактерий

Цитоплазма каждой клетки окружена мембраной, которая ограничивает ее от окружающей среды. Цитоплазматическая мембрана (ЦПМ) является исключительно полифункциональной структурой:

1. ЦПМ воспринимает всю химическую информацию, поступающую в клетку из внешней среды.

2. Она является основным осмотическим барьером, благодаря которому внутри клетки поддерживается определенное осмотическое давление.

3. ЦПМ совместно с клеточной стенкой участвует в регуляции роста и клеточного деления бактерий.

4. ЦПМ участвует в регуляции процессов репликации и сегрегации хромосом и плазмид (они связаны с ее рецепторами).

5. В ЦПМ содержится значительное количество ферментов, в том числе системы переноса электронов (ЦПМ — место генерации энергии у бактерий).

6. С ЦПМ связаны жгутики и аппарат регуляции их движения.

7. ЦПМ участвует в процессах транспорта (в том числе активного) питательных веществ в клетку и продуктов жизнедеятельности, включая ферменты и экзотоксины, из клетки в окружающую среду. В ней содержатся белки, участвующие в облегченной диффузии и активном транспорте.

8. ЦПМ играет важную роль в компартментализации и стабилизации рибосом. 9.ЦПМ участвует в синтезе компонентов клеточной стенки. 10. ЦПМ участвует в образовании мезосом (мезосомы образуются в результате инвагинации участка ЦПМ в цитоплазму, они открыты в периплазматическое пространство).

Каким образом мембрана осуществляет на молекулярном уровне свои многочисленные функции — один из актуальнейших вопросов современной биологии. На долю ЦПМ приходится около 10% сухого веса бактерий. Она содержит 25—40% фосфолипидов, образующих два слоя, 20—75% белков и до 6% утлеводов. Молекулы фосфолипидов асимметричны: головки, несущие электрический заряд, гидрофильны; хвостики — нейтральны и гидрофобны. Фосфолипиды упакованы в мембране следующим образом: их полярные гидрофильные головки обращены наружу и образуют два слоя ЦПМ — внутренний и внешний, а неполярные гидрофобные хвостики скрыты в толще мембраны. На электронограммах ЦПМ имеет вид трехслойной структуры, состоящей из двух 2 параллельных темных слоев и разделяющего их светлого слоя. Этот слой более проницаем для электронов, чем слои, состоящие из полярных концов фосфолипидов, ассоциированных с белками. Специфичность функций ЦПМ во многом зависит от набора содержащихся в них белков. Расположение их в ЦПМ своеобразно: некоторые белки пронизывают весь двойной липидный слой, определенная часть белков связана или только с внутренней, или только с наружной поверхностью мембраны. Это вытекает из того, что взаимодействие между мембраной и цитоплазмой, с одной стороны, мембраной и внешней средой, с другой — определяет различные, хотя и взаимосвязанные процессы ее жизнеобеспечения: облегченная диффузия, активный транспорт, элементарной биологической мембраны.

При избыточном росте (по сравнению с рос­том клеточной стенки) цитоплазматическая мембрана образует инвагинаты - впячивания в виде сложно закрученных мембранных структур, называемые мезосомами. Менее сложно закрученные структуры называются внутрицитоплазматическими мембранами. Роль мезосом и внутрицитоплазматических мембран до конца не выяснена. Предполагают даже, что они являются артефактом, возника­ющим после приготовления (фиксации) пре­парата для электронной микроскопии. Тем не менее, считают, что производные цитоплазматической мембраны участвуют в делении клетки, обеспечивая энергией синтез клеточ­ной стенки, принимают участие в секреции веществ, спорообразовании, т. е. в процессах с высокой затратой энергии.

Цитоплазма занимает основной объем бак­териальной клетки и состоит из растворимых белков, рибонуклеиновых кислот, включе­ний и многочисленных мелких гранул — ри­босом, ответственных за синтез (трансля­цию) белков.

Рибосомы бактерий имеют размер около 20 нм и коэффициент седиментации 70S, в отличие от 8OS-рибосом, характерных для эукариотических клеток. Поэтому некото­рые антибиотики, связываясь с рибосомами бактерий, подавляют синтез бактериального белка, не влияя на синтез белка эукарио­тических клеток. Рибосомы бактерий могут диссоциировать на две субъединицы -- 50S и 30S. Рибосомные РНК (рРНК.) — консер­вативные элементы бактерий («молекуляр­ные часы» эволюции). 16S рРНК. входит в состав малой субъединицы рибосом, a 23S рРНК— в состав большой субъединицы ри­босом. Изучение 16S рРНК. является основой геносистематики, позволяя оценить степень родства организмов.

В цитоплазме имеются различные включе­ния в виде гранул гликогена, полисахаридов, бета-оксимасляной кислоты и полифосфатов (волютин). Все запасные вещества присутствуют в клетки в химически инертной форме. Такое состояние препятствует нарушению осмостаза клеточного содержимого. Некоторые включения просто лежат в цитоплазме, другие окружены тонкой мембраной. Мембрана обычно белковой природы, но иногда может содержать и липиды. Они накапливаются при избытке питательных веществ в окружающей среде и выполняют роль запасных веществ для пита­ния и энергетических потребностей.

Волютин обладает сродством к основным красителям и легко выявляется с помощью специальных методов окраски (например, по Нейссеру) в виде метахроматических гранул. Толуидиновым синим или метиленовым голу­бым волютин окрашивается в красно-фиоле­товый цвет, а цитоплазма бактерии — в синий. Характерное расположение гранул волютина выявляется у дифтерийной палочки в виде ин­тенсивно прокрашивающихся полюсов клетки. Метахроматическое окрашивание волютина связано с высоким содержанием полимеризованного неорганического полифосфата. При электронной микроскопии они имеют вид элек­тронно-плотных гранул размером 0,1—1,0 мкм.

Нуклеоид — эквивалент ядра у бактерий. В 1956 году внутри бактериальных клеток была обнаружена «ядерная зона», или нуклеоид, где размещена бактериальная хромосома. Бактериальная ДНК обнаружена в кольцевой и линейной формах. Для клеток E.coli доказано, что ДНК существует в виде кольцевой молекулы, в то время как для Borrelia burgdorferi в 1989 г. показано, что клетки содержат ДНК в линейной форме. Нуклеоид, в отличие от ядра эукариот, не име­ет ядерной оболочки, ядрышка и основных белков (гистонов). Обычно в бактериальной клетке содержится одна хромосома, но при нарушении деления в ней может находиться 4 и более копий одной хромосомы. У некоторых видов в клетки обнаружены две и три неидентичных хромосомы. У видов Vibrio, Leptospira interrogans обнаружены две кольцевые хромосомы. Поэтому идея, что бактерии содержат только одну хромосому, считается устаревшей. Нуклеоид выявляется в световом микроскопе после ок­раски специфическими для ДНК методами: по Фельгену или по Романовскому—Гимзе. На электронограммах ультратонких срезов бактерий нуклеоид имеет вид светлых зон с фибриллярными, нитевидными структурами ДНК, связанной определенными участками с цитоплазматической мембраной или мезосомой, участвующими в репликации хромосо­мы.

Кроме нуклеоида в бактериальной клетке имеются внехромосомные факторы наследственности плазмиды, представляющие собой ковалентно замкнутые кольца ДНК. Они кодируют не основные для жизнедеятельности бактериальной клетки функции, но придающие бактерии преиму­щества при попадании в неблагоприятные условия существования.

Капсула, микрокапсула, слизь. Капсула — слизистая структура толщиной более 0,2 мкм, прочно связанная с клеточной стенкой бак­терий и имеющая четко очерченные внешние границы. Капсула различима в мазках-отпе­чатках из патологического материала. Поверхность колоний клеток с капсулами выглядит гладкой, влажной, блестящей.

Многие бактерии образуют микрокапсулу — слизистое образование толщиной менее 0,2 мкм, выявляемое лишь при электронной микроско­пии. От капсулы следует отличать слизь — мукоидные экзополисахариды, не имеющие четких внешних границ. Слизь растворима в воде.

Мукоидные экзополисахариды характерны для мукоидных штаммов синегнойной палоч­ки, часто встречающихся в мокроте больных с кистозным фиброзом. Бактериальные эк­зополисахариды участвуют в адгезии (прили­пании к субстратам); их еще называют гликокаликсом. Кроме синтеза экзополисахаридов бактериями, существует и другой механизм их образования: путем действия внеклеточных ферментов бактерий на дисахариды. В резуль­тате этого образуются декстраны и леваны.

Капсула и слизь предохраняют бактерии от повреждений, высыхания, так как, явля­ясь гидрофильными, хорошо связывают воду, препятствуют действию защитных факторов макроорганизма и бактериофагов.

Жгутики бактерий определяют подвижность бактериальной клетки. Жгутики представляют собой тонкие нити, берущие начало от цитоплазматической мембраны, имеют большую длину, чем сама клетка. Толщина жгутиков 12-20 нм, длина 3—15 мкм. Они со­стоят из 3 частей:

1. - спиралевидной нити,

2. - крюка

3. - базального тельца, содержащего стержень со специальными дисками (1 пара дисков — у грамположительных и 2 пары — у грамотрицательных бактерий) и моторными белками (рис).

Дисками жгутики при­креплены к цитоплазматической мембране и клеточной стенке. При этом создается эффект электромотора со стержнем — ротором, вра­щающим жгутик. В качестве источника энер­гии используется разность протонных по­тенциалов на цитоплазматической мембране. Механизм вращения обеспечивает протонная АТФ-синтетаза. Скорость вращения жгути­ка может достигать 100 об/с. У бактерий жгутики правовращающиеся. При наличии у бактерии нескольких жгутиков они начинают синхронно вращаться, сплетаясь в единый пу­чок, образующий своеобразный пропеллер.

Жгутики состоят из белка — флагеллина (от. flagellum — жгутик), являющегося антигеном — так называемый Н-антиген. Субъединицы флагеллина закручены в виде спирали.

Число жгутиков у бактерий различных видов варьирует от одного (монотрих) у холерного виб­риона до десятка и сотен жгутиков, отходящих по периметру бактерии (перитрих), у кишечной палочки, протея и др. Лофотрихи имеют пучок жгутиков на одном из концов клетки. Амфитрихи имеют по одному жгутику или пучку жгутиков на противоположных концах клетки.

Жгутики выявляют с помощью электронной микроскопии препаратов, напыленных тяжелы­ми металлами, или в световом микроскопе после обработки специальными методами, основанны­ми на протравливании и адсорбции различных веществ, приводящих к увеличению толщины жгутиков (например, после серебрения).

Ворсинки, или пили (фимбрии) — нитевид­ные образования, более тонкие и короткие, чем жгутики. Пили отходят от поверхности клетки и состоят из белка пилина, который организован в спиральную структуру. Архитектура пилей варьирует от тонких нитевидных до толстых прочных палочкообразных образований с осевыми отверстиями. Они обладают антигенной активностью. Различают пили, ответственные за адгезию, т. е. за прикрепление бактерий к поражаемой клетке, а также пили, ответствен­ные за питание, водно-солевой обмен, и поло­вые (F-пили) или пили 4-го типа, или конъюгационные, пили.

Обычно пили многочисленны — несколько сотен на клетку. Однако половых пилей обыч­но бывает 1—3 на клетку: они образуются так называемыми «мужскими» клетками-донора­ми, содержащими трансмиссивные плазмиды (F-, R-, Со/-плазмиды). Отличительной осо­бенностью половых пилей является их взаи­модействие с особыми «мужскими» сферичес­кими бактериофагами, которые интенсивно адсорбируются на половых пилях (рис. ).

Основное предназначение пилей поддерживать на своих концах специфические прикрепительные структуры (адгезины). Адгезины являются посредниками при бактериальных контактах, при контактах с неживыми объектами, тканями и клетками восприимчивых организмах. Колонизация тканей хозяина бактериальными патогенами обычно зависит от стереохимического подобия между архитектурой адгезина и соответствующего рецептора клетки хозяина (рис). Таким образом, изучение функционирования пилей позволит не только глубже понять механизм колонизации и передачи сигналов, но и вести разработку новых поколений антимикробных препаратов.

Споры своеобразная форма покоящихся бактерий с грамположительным типом строе­ния клеточной стенки (рис.).

Споры образуются при неблагоприятных условиях существования бактерий (высуши­вание, дефицит питательных вешеств и др.). Внутри бактериальной клетки образуется одна спора (эндоспора). Образование спор способствует сохранению вида и не является способом размножения, как у грибов.

Спорообразующие бактерии рода Bacillus, у которых размер споры не превыша­ет диаметр клетки, называются бациллами. Спорообразующие бактерии, у которых раз­мер споры превышает диаметр клетки, отчего они принимают форму веретена, называют­ся клостридиями, например бактерии рода Clostridium (лат. clostridium — веретено). Споры кислотоустойчивы, поэтому окрашиваются по методу Ауески или по методу Циля—Нельсена в красный, а вегетативная клетка — в синий.

Спорообразование, форма и расположение спор в клетке (вегетативной) являются ви­довым свойством бактерий, что позволяет отличать их друг от друга.

Форма спор может быть овальной, шаровидной; расположение в клетке :

  1. терминальное, т. е. на конце палоч­ки (у возбудителя столбняка),

  2. субтерминаль­ное — ближе к концу палочки (у возбудителей ботулизма, газовой гангрены)

  3. центральное (у сибиреязвенной бациллы).

Процесс спорообразованя (споруляция) прохо­дит ряд стадий, в течение которых часть цитоп­лазмы и хромосома бактериальной вегетатив­ной клетки отделяются, окружаясь врастающей цитоплазматической мембраной, — образуется проспора.

Проспору окружают две цитоплазматические мембраны, между которыми формиру­ется толстый измененный пептидогликановый слой кортекса (коры). Изнутри он соприкаса­ется с клеточной стенкой споры, а снаружи — с внутренней оболочкой споры. Наружная обо­лочка споры образована вегетативной клеткой.

Споры некоторых бактерий имеют дополни­тельный покров — экзоспориум.

Таким образом формируется многослойная плохо проницаемая оболочка. Спорообразование сопровождается интенсивным потреблением проспорой, а затем и формирующейся оболочкой споры дипиколиновой кислоты и ионов кальция. Спора приоб­ретает термоустойчивость, которую связывают с наличием в ней дипиколината кальция.

Спора долго может сохраняться из-за нали­чия многослойную оболочки, дипиколината кальция, низкого содержания воды и вялых процессов метаболизма. В почве, например, возбудители сибирской язвы и столбняка мо­гут сохраняться десятки лет.

В благоприятных условиях споры прораста­ют, проходя три последовательные стадии (рис):

1. активацию

2. инициацию

3. вырастание

При этом из одной споры образуется одна бактерия.

Активация — это готовность к прорастанию. При температуре 60—80°С спора активируется для прорастания.

Инициация прорастания длит­ся несколько минут. Стадия вырастания характе­ризуется быстрым ростом, сопровождающимся разрушением оболочки и выходом проростка.

Вопросы для самоконтроля