Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
b63810.doc
Скачиваний:
9
Добавлен:
15.04.2023
Размер:
3.8 Mб
Скачать

- Паргелический круг – форма гало, представляющая узкую белую полосу, появляющуюся на небе днем и проходящую параллельно горизонту на высоте Солнца;

- радуга – оптическое явление в атмосфере в виде одной или нескольких разноцветных дуг, видимых на небосводе на фоне освещаемой Солнцем завесы дождя, находящейся в противоположной стороне от Солнца. Возникновение радуги объясняется преломлением, отражением и дифракцией света в каплях дождя.

Рассеяние света в атмосфере влияет на видимость удаленных предметов, которая уменьшается при возрастании аэрозольных примесей в воздухе. Для многих целей очень существенно знать, на каком расстоянии перестают различаться очертания предметов за воздушной завесой. Это расстояние называют дальностью видимости. В очень чистом воздухе, например арктического происхождения, дальность видимости может достигать сотен километров. В воздухе, содержащем много пыли или продуктов конденсации, дальность видимости может понижаться. Так, при слабом тумане дальность видимости порядка 500-1000 м, а при сильном тумане или сильной песчаной буре она может снижаться до десятков метров и даже до метров. Коэффициент прозрачности зависит от влажности воздуха. С увеличением влажности он уменьшается и, наоборот, с по­нижением ее возрастает. Коэффициент прозрачности зависит также от запыленности воздуха. Пыль понижает его значения.

В зависимости от высоты Солнца над горизонтом пути солнечных лучей в атмосфере весьма различны.

По мере возрастания высоты Солнца над горизонтом пути солнечных лучей в атмосфере сокраща­ются, и самый короткий путь их наблюдается при высоте Солнца в 90°, когда оно находится в зените. Лучи в этом слу­чае падают отвесно. Если принять массу атмосферы при от­весном падении лучей за единицу, то при других высотах Солнца над горизонтом масса атмосферы выразится следую­щими величинами: при 30° равна 2, при 10° – 5,6, при 5° – 10,4, при 1° – 27,0.

Эти данные показывают, что при различных высотах Солнца над горизонтом лучи его проходят различные массы атмосферы, вызывающие неодинаковое ослабление солнечной радиации в течение дня вследствие поглощения и рассеяния ее атмосферой.

Не рассеянная и не поглощенная в атмосфере прямая солнечная радиация достигает земной поверхности. Она частично отражается от земной поверхности, а в большей степени поглощается ею и нагревает ее. Часть рассеянной радиации также достигает земной поверхности, частично от нее отражается и частично ею поглощается. Другая часть рассеянной радиации уходит вверх, в межпланетное пространство. В результате поглощения и рассеяния радиации в атмосфере прямая радиация, дошедшая до земной поверхности, изменяется в сравнении с тем, что было на границе атмосферы. Интенсивность радиации уменьшается, а спектральный состав ее изменяется, так как лучи разных длин волн поглощаются и рассеиваются в атмосфере по-разному. В самом лучшем случае, т. е. при наиболее высоком стоянии солнца и при достаточной чистоте воздуха, интенсивность прямой радиации на уровне моря – около 1,5 кал/см2мин. По мере приближения солнца к горизонту и увеличения толщи воздуха, проходимой солнечными лучами, интенсивность прямой радиации все более убывает. При этом часто бывает необходимо знать положение Солнца на небесном своде, которое характеризуется его координатами: высотой, азимутом, склонением, часовым углом.

Высота Солнца определяется угловым расстоянием его от горизонта, т.е. углом между линией, соединяющей глаз наблюдателя с Солнцем, и плоскостью горизонта.

Склонение Солнца δ определяется угловым расстоянием его от небесного экватора (в северном полушарии положительное, а в южном – отрицательное). Значение склонения солнца на каждый день приводится в астрономических ежегодниках.

Часовой угол τ определяется угловой мерой дуги небесного экватора, заключенной между основанием небесного меридиана и кругом склонения (плоскостью, проходящей через Солнце и полюс Мира). Часовой угол соответствует истинному солнечному времени, отсчитанному от полудня.

Высота Солнца на широте φ в момент, когда склонение солнца составляет δ и часовой угол равен τ, определяется по формуле

. (3)

Высота Солнца в истинный полдень на любой широте определяется как .

Азимут Солнца – угол между плоскостью небесного меридиана и вертикальной плоскостью, проходящей через центр Солнца (вертикаль солнца), который определяется по формуле

. (4)

Падая на земную поверхность, прямая и рассеянная радиации в большей своей части поглощаются в верхнем, тонком слое почвы или воды и переходят в тепло, а частично отражаются. Величина отражения солнечной радиации земной поверхностью зависит от характера этой поверхности. Отношение количества отраженной радиации к общему количеству радиации, падающей на данную поверхность, называется альбедо поверхности. Это отношение выражается в процентах. Остальная часть падающей на поверхность радиации поглощается земной поверхностью и идет на нагревание верхних слоев почвы и воды. Эту часть называют поглощенной радиацией.

Альбедо поверхности почвы в общем заключается в пределах 10-30%; в случае влажного чернозема оно снижается до 5%, а в случае сухого светлого песка может повышаться до 40%. С возрастанием влажности почвы альбедо снижается. Альбедо растительного покрова - леса, луга, поля - заключается в пределах 10-25%. Для свежевыпавшего снега альбедо - 80-90%, для давно лежащего снега – около 50% и ниже. Альбедо гладкой водной поверхности для прямой радиации меняется от нескольких процентов при высоком Солнце до 70% при низком; оно зависит также от волнения. Для рассеянной радиации альбедо водных поверхностей – 5-10%. В среднем альбедо поверхности Мирового океана – 5-20%. Альбедо верхней поверхности облаков - от нескольких процентов до 70-80% в зависимости от типа и мощности облачного покрова; в среднем же оно 50-60%.

Растительный покров задерживает солнечную радиацию, и последняя достигает земной поверхности в очень ослабленной степени. Осо­бенно значительно она задерживается пологом леса.

Пропускание солнечной радиации деревьями в лесу зависит от времени суток и времени года. В утренние и вечерние часы лучи Солнца, при малой его высоте над горизонтом, про­ходят в пологе леса наибольшие пути, а в полуденные часы - наименьшие. В лесу около полудня образуется много солнеч­ных бликов. Поэтому утром и вечером полог леса сильнее за­держивает солнечную радиацию, а в полуденные часы - сла­бее. В лиственных лесах наибольшее пропускание радиации пологом леса наблюдается весной до распускания листьев и осенью после листопада, наименьшее – в летние месяцы.

В ветренную погоду, при раскачивании стволов, сучьев и ветвей деревьев, пропускание солнечной радиации пологом ле­са возрастает вследствие увеличения в нем количества прос­ветов и размера их. На степень пропускания солнечной радиа­ции пологом леса влияет еще возраст древостоя, так как с возрастом происходит естественное самоизреживание его. Пропускание солнечной радиации зависит также от типа на­саждения, от степени сомкнутости крон деревьев, от проведе­ния различных видов рубок, ухода за лесом и т. д. В дубовом 43-летнем насаждении в районе Воронежа в яс­ный день летом кроны деревьев пропускали только около 10% солнечной радиации по сравнению с полем. Под кронами елей она снижается еще больше.

Из общего по­тока суммарной радиации особо важную роль для растений играет часть энергии солнечных лучей в интервале длин волн от 0,38 до 0,71 мк. Такая радиация называется фотосинтетиче­ски активной радиацией (ФАР). Она представляет то количе­ство энергии солнечной радиации, которое растения могут ис­пользовать в процессе фотосинтеза в течение вегетационного периода. В открытом месте содержание фотосинтетической радиации в среднем составляет около 50% суммарной солнеч­ной радиации. Под пологом леса свет беднее фотосинтетиче­скими лучами, чем в открытом месте; лиственные и сосновые насаждения слабее задерживают их, чем еловые и пихтовые.

Преобладающая часть радиации, отраженной земной поверхностью и верхней поверхностью облаков, уходит за пределы атмосферы в мировое пространство. Также уходит в мировое пространство часть рассеянной радиации – около одной трети ее. Отношение этой уходящей в космос отраженной и рассеянной солнечной радиации к общему количеству солнечной радиации, поступающему в атмосферу, носит название планетарного альбедо Земли или просто альбедо Земли. Планетарное альбедо Земли оценивается в 35-40%; по-видимому, оно ближе к 35%. Основную часть планетарного альбедо Земли составляет отражение солнечной радиации облаками.

Верхние слои почвы и воды, снежный покров и растительность сами излучают длинноволновую радиацию; эту земную радиацию чаще называют собственным излучением земной поверхности. Интенсивность собственного излучения можно рассчитать, зная абсолютную температуру земной поверхности. По закону Стефана-Больцмана излучение с каждого квадратного сантиметра абсолютно черной поверхности в калориях за одну минуту при абсолютной температуре равно

, (5)

где кал/см2 – постоянная Стефана-Больцмана; - коэффициент излучения2. Земная поверхность излучает почти как абсолютно черное тело, и интенсивность ее излучения Es может быть определена по формуле (5). При +15°С (или 288°К) кал/см2мин. Столь большая отдача радиации с земной поверхности приводила бы к быстрому ее охлаждению, если бы этому не препятствовал обратный процесс - поглощение солнечной и атмосферной радиации земной поверхностью.

Атмосфера нагревается, поглощая как солнечную радиацию (хотя в сравнительно небольшой доле, около 15% всего ее количества, приходящего к Земле), так и собственное излучение земной поверхности. Кроме того, она получает тепло от земной поверхности путем теплопроводности, а также при испарении и последующей конденсации водяного пара. Будучи нагретой, атмосфера излучает сама. Так же, как и земная поверхность, она излучает невидимую инфракрасную радиацию примерно в том же диапазоне длин волн. Большая часть (70%) атмосферной радиации приходит к земной поверхности, остальная часть уходит в мировое пространство. Атмосферную радиацию, приходящую к земной поверхности, называют встречным излучениема), потому что оно направлено навстречу собственному излучению земной поверхности. Земная поверхность поглощает это встречное излучение почти целиком (на 90-99%). Встречное излучение всегда несколько меньше земного. Поэтому ночью, когда солнечной радиации нет и к земной поверхности приходит только встречное излучение, земная поверхность теряет тепло за счет положительной разности между собственным и встречным излучением. Разность между собственным излучением земной поверхности и встречным излучением атмосферы называют эффективным излучениеме); оно представляет собой чистую потерю лучистой энергии, а следовательно, и тепла с земной поверхности ночью

. (6)

Разность между поглощенной радиацией и эффективным излучением

(7)

называют радиационным балансом земной поверхности (или остаточной радиацией). В выражении (7) обозначены: I - интенсивность прямой радиации, i - интенсивность рассеянной радиации, - высота Солнца, А – альбедо поверхности. Радиационный баланс переходит от ночных, отрицательных значений к дневным, положительным после восхода Солнца при высоте его 10-15°. От положительных значений к отрицательным он переходит перед заходом солнца при той же его высоте над горизонтом. При наличии снежного покрова радиационный баланс переходит к положительным значениям только при высоте Солнца около 20-25°, так как при большом альбедо снега поглощение им суммарной радиации мало. Днем радиационный баланс растет с увеличением высоты Солнца и убывает с ее уменьшением. В ночные часы, когда суммарная радиация отсутствует, отрицательный радиационный баланс равен эффективному излучению и потому меняется в течение ночи мало, если только условия облачности остаются одинаковыми. На рис. 1 представлена карта распределения радиационного баланса земной поверхности. На территории России годовой радиационный баланс на суше в северных широтах –- порядка 10 ккал/см2, а на юге - до 50 ккал/см2.

Рис.1. Радиационный баланс земной поверхности в год (в ккал/см2год).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]