Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

2403

.pdf
Скачиваний:
0
Добавлен:
15.11.2022
Размер:
1.54 Mб
Скачать

квадратичными отклонениями (или, как говорят в этом случае, отсутствуют превалирующие факторы), то в соответствии с центральной предельной теоремой распределение значений параметра качества будет стремиться к гауссовскому закону. При этом каждая из воздействующих на качество объекта случайных величин может подчиняться каким угодно законам распределения. Существуют три условия центральной предельной теоремы: случайные величины должны быть независимыми (или слабо зависимыми), их число должно стремиться к бесконечности, среди случайных величин должны отсутствовать превалирующие.

Можно утверждать, что если технологический процесс такого сложного производства, как выпуск современных ЭС, отлажен и контролируем, то распределение значений параметра качества на каждой технологической операции будет близко к гауссовскому. Это можно проверить, набрав достаточную статистику. Особенно часто встречается гауссовский закон при измерениях. Такие случайные величины, как ошибки измерений, могут быть представлены как сумма большого числа сравнительно малых слагаемых — элементарных ошибок, каждая из которых вызвана действием отдельной величины, не зависящей от остальных. Каким бы законам распределения ни были подчинены отдельные элементарные ошибки, особенности этих распределений в сумме большого числа слагаемых нивелируются и сумма оказывается подчиненной закону, близкому к гауссовскому. Основное ограничение, налагаемое на суммируемые ошибки, состоит в том, чтобы все они в общей сумме равномерно играли относительно малую роль, т. е. должно выполняться третье условие центральной предельной теоремы. Если это условие не выполняется и, например, одна из случайных ошибок окажется по своему влиянию на сумму слагаемых ошибок резко превалирующей над всеми другими, то закон распределения этой превалирующей ошибки наложит свое

31

влияние на сумму и определит в основных чертах ее закон распределения.

Гауссовский закон распределения характеризуется плотностью вероятности

f(x)

 

1

 

e [x M(x)]2 /(2 2)

 

 

 

 

 

(9.5)

 

 

2

 

 

Для определенного распределения М(х) и σ — величины постоянные. Они являются параметрами гауссовского

распределения. Графически функция (2.13) представлена на рис. 9.2. Поясним с помощью этого рисунка физический смысл плотности вероятности f(x). Предположим, что случайная величина х представляет собой время работы изделия до отказа (время безотказной работы). Зададимся вполне определенным значением времени отказа изделия, равным а, и поставим вопрос следующим образом: какова вероятность того, что данное изделие откажет именно в момент времени x=a?

Рис. 9.2. Кривая распределения случайной величины, подчиняющаяся гауссовскому закону

32

Поставленный таким образом вопрос является некорректным в теории вероятностей. И поэтому ответ будет однозначным: вероятность того, что отказ произойдет в определенный момент времени х = а, равна нулю. Если же вблизи а взять малый интервал, то вероятность того, что случайная величина х попадет в этот интервал, уже не будет

равна нулю, а будет равна:

 

 

 

P[a≤ x ≤ a + ΔX]=f(a)

Х

(9.6)

При малых Х

правая часть

уравнения

(2.14)

представляет собой площадь прямоугольника со сторонами f( а) и Х. Если обе части уравнения (2.14) разделить на Х, то получим вероятность, приходящуюся на единицу длины, т. е. плотность вероятности (аналогично тому, что плотность вещества — это масса на единицу объема)

f (a)

P[a x a X ]

(9.7)

X

 

 

в этом и заключается физический смысл плотности вероятности.

Вернемся опять к кривой гауссовского закона распределения, приведенной на рис. 9.2. Как видно, кривая распределения имеет характерную колоколообразную форму.

Максимальная ордината кривой, равная 1/ 2 ,

соответствует точке х=М(х)—центру распределения. Точка перегиба кривой располагается на расстоянии ±σ от центра распределения (как показано на рис. 9.2). По мере удаления от точки М(х) плотность распределения уменьшается, и при х→±∞ кривая асимптотически приближается к оси абсцисс.

Если при изменении центра группировки М(х) кривая распределения будет смещаться вдоль оси абсцисс, не изменяя своей формы, то при изменении σ кривая распределения меняет свою форму.

Максимальная ордината кривой распределения обратно пропорциональна σ. Так как площадь под кривой всегда должна оставаться равной единице, то при увеличении σ

33

кривая опускается вниз, одновременно растягиваясь вдоль оси абсцисс. Напротив, при уменьшении σ кривая вытягивается вверх, одновременно сжимаясь с боков.

Если рассмотреть частный случай, когда М(х) равно нулю, а σ равно единице, то, обозначив плотность вероятности через f0(x), уравнение (2.13) можно записать в следующем виде:

f (x) (1/

2

)e x2/2

(9.8)

0

 

 

 

Функция (2.14) легко табулируется и для нее не представляет труда составить таблицы. С помощью таблицы для

f0 (х) нетрудно вычислить f(x), когда σ не равна единице, а М(х) отлично от нуля. Действительно, из (9.3) и (9.6) имеем

(9.9)

Интегральная функция распределения для случая гауссовского закона

(9.10)

С помощью формулы (2.18) определяется вероятность того, что случайная величина х будет меньше некоторого значения X. Если же требуется найти вероятность того, что случайная величина х, имеющая гауссовский закон распределения, будет лежать в каких-либо пределах от х1 до х2, необходимо соответственно изменить пределы интегрирования в выражении (9.10), т. е.

34

 

 

 

 

1

 

x2

 

2

 

 

Bep{x x x }

 

 

 

exp

[X M(x)]

dx

 

 

 

 

2 2

1

2

 

 

 

 

 

 

(9.11)

 

 

 

 

2

 

x

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

Произведя в (2.19) замену переменной интегрирования X на α=[X—M(x)]/σ, которую называют нормированием, и учитывая, что Х= ασ ± М(х), а dx = σdα, получаем

 

 

1

 

2

 

2

 

 

Bep{x1 x x2}

 

 

 

exp

 

d

(9.12)

 

 

 

2

 

 

 

2

 

 

 

 

 

 

 

 

 

1

 

 

 

 

Новые нормированные пределы интегрирования α1 и α2 заменили пределы х1 и х2. Представив правую часть выражения (2.20) в виде суммы двух интегралов, получим

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

0

 

 

 

 

 

 

2

 

 

 

 

Bep{x1 x

x2}

 

 

 

 

 

 

 

exp

 

 

 

d

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

2

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

exp

 

d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

2

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

1

 

 

 

1

 

 

 

 

 

2

 

 

 

 

 

exp

 

 

 

 

 

d

 

 

 

 

 

 

exp

 

 

 

d

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

2

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

0

 

 

 

 

 

 

 

 

где 1

 

x1 M(x)

;

 

2

 

x2 M(x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

35

Знак перед первым слагаемым изменился вследствие изменения пределов интегрирования α1 - 0на 0 – α2.

Функция

Ф( )

 

1

exp{

2

}d

 

 

 

 

 

 

 

2 0

2

(9.13)

 

 

 

 

 

 

 

 

 

называется нормированной функцией Лапласа или интегралом вероятности. Для этой функции имеется в приложении. Таблица построена для положительных значений, но, учитывая, что функция Ф(α) нечетная, т. е. Ф(-α)= -Ф(α), для отрицательных значений α табличный результат следует брать со знаком минус. В некоторых случаях следует брать функцию

Ф1(α)=2Ф(α). (9.14)

Таким образом, для получения Ф1(α) достаточно удвоить значение Ф(α), взятое из приложения.

Площадь под кривой Гаусса равна 1, или 100% всех значений случайной величины в генеральной совокупности. Величина площади, заключенной между одно-, двух- и трехсигмовыми границами, найденными при подстановке в (9.14) значений Ф(а), взятых из приложения для σ, соответственно равного 1, 2 и 3, приведена табл. 9.1.

Таблица 9.1

Величина площади под кривой Гаусса при различных границах изменения случайной величины

Границы изменения случайной

Площадь под кривой

величины X

Гаусса

Односигмовые [М(х) — σ; М(х) + σ]

0,6827

Двухсигмовые [М(х) —2σ; М(х) +2σ]

0,9545

Трехсигмовые [М(х) - 3σ; М(х) + 3σ ]

0,9973

36

Приведенные в табл. 9.1 данные можно истолковать следующим образом. Если 68,27%, т. е. 2/3, наблюдаемых значений случайной величины лежит между границами М(х) — σ и М(х) + σ , то 31,73% всех наблюдений следует ожидать за этими границами (соответствующими точками перегиба кривой Гаусса), а именно: 15,865% — за границей М(х)— σ; 15,865% — за границей М(х)+ σ в силу симметричности гауссовского распределения. Как уже отмечалось ранее, односигмовые границы соответствуют точкам перегиба кривой Гаусса.

Между трехсигмовыми границами [М(х) - 3σ; М(х) + 3σ] находится 99,73% всех наблюдений, т. е. практически все значения. Только 0,27% значений лежит за этими границами, а именно 0,135% — за границей М (х) -Зσ; 0,135% — за границей М(х) + Зσ. Это означает, что при проведении 10 000 наблюдений в среднем 27 наблюдений будет лежать за трехсигмовыми границами или при 270 наблюдениях — одно. Поэтому, зная стандартное отклонение и математическое ожидание случайной величины, подчиняющейся гауссовскому закону распределения, можно ориентировочно указать интервал ее практически возможных минимальных и максимальных значений. И если какое-либо значение появляется за пределами трехсигмового участка, то его можно считать чисто случайным. Так как вероятность появления такого события очень мала, а именно 1/270, следует считать, что рассматриваемое событие является практически невозможным. Такой способ оценки диапазона возможных значений случайной величины известен в математической статистике под названием правила трех сигм.

На практике участок, лежащий внутри трехсигмовых границ, называют областью статистического допуска параметра качества соответствующего изделия или процесса его изготовления.

Таким образом, следует отметить, что если распределение значений параметра качества близко к

37

гауссовскому, то это означает, что технологический процесс отлажен и контролируем. Поэтому часто приходится использовать различные критерии для проверки соответствия экспериментального (т.е. полученного при измерении параметра качества изделий в выборке) закона распределения случайной величины гауссовскому.

ЛЕКЦИЯ 4 10. Статистическая проверка гипотез. Критерий Пирсона

Для проверки гипотезы о соответствии экспериментального закона распределения случайной величины теоретическому наиболее часто применяют критерий Пирсона или, как его иначе называют, критерий χ2 («хи-квадрат»), так как принятие и отклонение гипотезы основаны на χ - распределении.

Предположим, что имеется статистический ряд наблюдений над случайной величиной X. Требуется проверить, согласуются ли экспериментальные данные с гипотезой о том, что случайная величина имеет предполагаемый закон распределения, заданный интегральной функцией распределения F(x) или плотностью вероятностей f(x), который в дальнейшем будем называть теоретическим законом распределения.

Первоначально статистический ряд разбивают на k интервалов и подсчитывают число значений случайной величины X в каждом интервале. В результате получают экспериментальный ряд частот:

m1' , m2' , m3' , , mk'

Следует сразу оговорить, что предпосылкой применения критерия χ2 является достаточная заполненность интервалов частотами. На практике рекомендуется иметь в каждом интервале не менее 5-10 наблюдений. Если число наблюдений в отдельных интервалах мало, имеет смысл объединить эти интервалы.

38

Исходя из предполагаемого теоретического закона распределения вычисляют частоты тi в тех самых интервалах, на которые разбит статистический ряд. В результате получают теоретический ряд частот в k интервалах m1 ,m2, т3 ,..., mк.

Для проверки согласованности теоретического и экспериментального распределения подсчитывают меру расхождения:

2

(m1' m1)2

 

(m2'

m2)2

...

(mk'

mk )2

,

m1

 

m2

 

mk

 

 

 

 

 

 

 

или

 

 

 

 

 

 

 

 

 

 

 

 

k

 

(m' m )2

 

 

 

2

i

i

 

 

(10.1)

 

mi

 

 

 

 

i 1

 

 

и число степеней свободы ν. Число степеней свободы равно в этом случае числу интервалов k минус число ограничений f:

ν = k – f

(10.2)

Число ограничений равно числу параметров в рассматриваемом законе распределения, увеличенному на единицу. Например, для гауссовского закона имеется два параметра: [М(х) и σ ] в этом случае число ограничений равно трем.

Для распределения χ2 составлены специальные таблицы (см. табл. П2 Приложения ). Пользуясь этими таблицами, можно для каждого значения χ 2 и числа степеней свободы v определить вероятность Р того, что за счет чисто случайных причин мера расхождения теоретического и экспериментального распределений (10.1) будет меньше, чем фактически наблюдаемое в данной серии опытов значение χ 2.

39

Если эта вероятность Р мала (настолько, что событие с такой вероятностью можно считать практически невозможным), то результат опыта следует считать противоречащим гипотезе о том, что закон распределения величины X есть F(х). Эту гипотезу следует отбросить как неправдоподобную.

Напротив, если вероятность Р сравнительно велика, можно признать расхождение между теоретическим и экспериментальным распределениями несущественным и отнести его за счет случайных причин. Гипотезу о том, что величина X распределена по закону F(x), можно считать в этом случае правдоподобной, по крайней мере не противоречащей полученным, экспериментальным данным.

В табл. П2 входами являются значение χ2 и число степеней свободы v. Числа, стоящие в таблице, представляют соответствующие значения вероятности Р.

Насколько должна быть мала вероятность Р для того, чтобы отбросить или пересмотреть гипотезу,— вопрос неопределенный. Он не может быть решен из математических соображений, а должен базироваться на априорных сведениях о физической сущности изучаемого процесса.

На практике, если Р<0,1, рекомендуется проверить эксперимент, если возможно — повторить его. В случае появления повторных расхождений следует попытаться найти наиболее подходящий для описания экспериментальных данных закон распределения.

Пример. Пусть в цехе выпускаются такие электронные изделия, как источники питания с постоянным выходным напряжением 200 в. Была сделана выборка из генеральной совокупности и измерены значения параметра качества отобранных изделий. Эти значения образуют непрерывный ряд значений от 190,5 в до 209,5 в. Раз объём этот непрерывный ряд значений на 19 интервалов (см. табл. 10.1). В графе 1 этой таблицы указаны номера интервалов, в графе 2 - границы интервалов, в графе 3- значения середин интервалов, в графе 4 указана частота попадания измеренного значения параметра в

40

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]