Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3 курс / Гигиена / инт 02 (Температурно-влажностный режим помещения).docx
Скачиваний:
156
Добавлен:
13.02.2022
Размер:
21.18 Кб
Скачать

Подвижность воздха

Подвижность воздуха создается конвекционными потоками воздуха, которые возникают в результате проникновения в помещение холодных масс воздуха, либо за счет разности температур в смежных участках помещений, а также создается искусственно работой вентиляционных систем, проветриванием помещений.

Подвижность воздуха оценивают по двум показателям: направлению и скорости движения.

Направление движения воздушных течений в атмосферном воздухе определяется с помощью флюгера. Измерение скорости движения воздуха осуществляется с использованием анемометров – чашечного (используется для определения скорости движения атмосферного воздуха от 1 до 50 м/с) или крыльчатого (более чувствителен, используется для измерений в проеме вентиляционных отверстий и в помещениях, где скорость движения воздуха может быть в пределах 0,3 - 15 м/с).

Малые скорости движения воздуха могут быть определены расчетным методом. Для этого необходим кататермометр. Это спиртовой термометр с цилиндрическим или шаровым резервуаром. Капилляр кататермометра имеет расширение в верхней части. Прибор позволяет определить охлаждающую способность воздуха. Результаты измерений используются при расчете скорости движения воздуха.

В настоящее время в гигиенической практике широко используются электроанемометры, а также электротермоанемометры.

            Большое значение имеет воздухообмен помещений, на который также влияет движение воздуха. При оценке воздухообмена помещений используется показатель кратности воздухообмена (показывает, сколько раз в течение 1 часа, полностью происходит обмен воздуха в помещении). Для расчета кратности воздухообмена необходимы показатели объема помещения, скорости движения воздуха в вентиляционном отверстии, его площади и длительности вентиляции или проветривания. Также, возможно рассчитать кратность воздухообмена, зная максимальное количество людей в помещении и воздушный куб. Воздушный куб – гигиеническая величина, которая составляет 37 м³ на 1 человека при условии рациональной вентиляции помещения.

            Помимо скорости, подвижность воздуха характеризуется еще и направлением. Направление ветра определяется той частью горизонта, откуда он дует. Направление ветров, преобладающее в данной местности, учитывается при строительстве каких-либо объектов и при планировке населенных мест. Промышленные предприятия, инфекционные больницы и другие объекты, которые могут оказывать неблагоприятное воздействие на окружающую среду и человека, следует размещать с подветренной стороны относительно селитебной территории.

            Наветренная сторона определяется по наибольшему количеству дней в году, когда дует ветер с какой-либо стороны света. При определении господствующего направления ветров фиксируются изменения направления ветра в течение определенного периода времени. Чаще всего - в течение года. Результаты наблюдений изображаются в виде графика. Графическое изображение повторяемости ветров имеет специальное название - роза ветров.

Пути теплоотдачи

Между человеком и окружающей средой постоянно происходит теплообмен. Поддержание тепловой стабильности человека обеспечивается работой системы терморегуляции, которая состоит из процессов теплообразования (химическая терморегуляция) и теплоотдачи (физическая терморегуляция).

            Нормальная жизнедеятельность и высокая работоспособность человека сохраняются в том случае, если тепловое равновесие, т.е. соответствие между продукцией тепла и его отдачей в окружающую среду, достигается без напряжения терморегуляции. Отдача же тепла организмом зависит от условий физических факторов окружающей среды.

            Изменение теплообразования у человека происходит тогда, когда изменяется температура окружающей среды (ниже или выше допустимой – 18-20оС).

            При низких температурах специфической реакцией химической терморегуляции является холодовая мышечная дрожь, при этом внешняя работа не совершается и вся энергия сокращения переходит в тепло.

            Эффективность повышения теплопродукции зависит от адаптационных возможностей организма, особенностей организации и характера питания, физической активности, состояния здоровья, теплоизоляционных свойств одежды и некоторых других факторов.

            Согласно современным представлениям о функциональной структуре системы терморегуляции организм человека делится на гомойотермное «ядро» и относительно пойкилотермную «оболочку».

            Показателем температуры «ядра» служит аксилярная температура, температура полости рта и других полостях тела. Температура «ядра» относительно постоянна, но может изменяться при очень интенсивных воздействиях, например, при тяжелой физической работе, сильном тепловом воздействии. Теплообразование осуществляется в «ядре» терморегуляции. В состав «ядра» входят внутренние органы туловища, головной мозг, верхние трети бедер.           

            «Оболочку» составляют ткани поверхностного слоя тела толщиной в 2,5см. Изменения теплопроводности «оболочки» главным образом определяют постоянство температуры «ядра». Теплоизолирующие свойства «оболочки» зависят от характера тканей и от степени их кровоснабжения.       Постоянство температуры «ядра» обеспечивается главным образом путем изменения кровоснабжения и кровенаполнения тканей «оболочки». Таким образом, важным показателем реакции организма на воздействие параметров микроклимата является температура кожи. Комфортному теплоощущению соответствует разница кожных температур 3-5оС на закрытых одеждой и открытых участках тела.

Теплоотдача осуществляется с поверхности «оболочки». Известно 4 пути теплоотдачиконвекция (отдача тепла менее нагретым слоям воздуха), кондукция (отдача тепла менее нагретым предметам при соприкосновении с ними), излучение (отдача тепла менее нагретым предметам, находящимся на расстоянии, то есть без соприкосновения), испарение (отдача тепла при испарении воды с поверхности кожи и дыхательных путей).

Потеря тепла конвекцией прямо пропорциональна разности температур кожи и воздуха. Чем выше разность, тем больше теплоотдача. Если температура воздуха возрастает – потеря тепла конвекцией падает, а при температуре 35 - 36ºС прекращается. Потеря тепла конвекцией возрастает и с увеличением скорости движения воздуха, но воздух, имеющий большую скорость движения, не успевает нагреваться и ненамного усиливает отдачу тепла. В тоже время, воздействуя на барорецепторы, может оказывать раздражающее действие.

Интенсивность теплоотдачи путем кондукции изменяется в зависимости от площади соприкосновения и зависит от температуры предмета.

Потеря тепла излучением зависит от разницы между температурой кожи тела человека температурой окружающих предметов. Если первая выше – происходит отдача тепла, и наоборот.

Потеря тепла испарением зависит от количества влаги, испаряющейся с поверхности тела. Теплоотдача путем испарения зависит от влажности воздуха, и может усиливаться при повышении температуры и скорости движения воздуха. В условиях воздействия микроклимата, незначительно отличающегося от гигиенических нормативов, удельный вес испарения с поверхности кожи составляет 2/3, с поверхности органов дыхания - 1/3. При повышенной влажности воздуха теплоотдача путем испарения затруднена.

В нормальных условиях человек теряет приметно 45% тепла излучением, 30% - конвекцией и кондукцией, 10% - испарением и 15% тепла теряется на нагревание принимаемой пищи, питья и вдыхаемого воздуха.

Повышенная или пониженная температура воздуха определяет особенности реакций системы терморегуляции. Действие высокой температуры воздуха на организм нередко вызывает серьезные и стойкие изменения в деятельности сердечно-сосудистой, нервной, мочеполовой, и др. систем.