Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shpory_sdelat-1.docx
Скачиваний:
69
Добавлен:
14.04.2020
Размер:
2.34 Mб
Скачать
  1. Чувствительность.

Защита должна обладать такой чувствительностью в пределах установленной для неё зоны, чтобы обеспечивалось её действие в самом начале возникновения повреждения, чем сокращаются размеры повреждения оборудования в месте к.з.

Таким образом, чувствительность – это свойство защиты, обеспечивающее выявление повреждения электрооборудования в самом начале его возникновения.

Чувствительность защиты должна также обеспечивать её действие при повреждениях на смежных участках сети. Так, например, если при повреждении в токе К1 (рисунок 6) по какой-либо причине не отключается выключатель В1, то должна подействовать защита следующего к источнику питания выключателя В4 и отключить этот выключатель. Такое действие защиты называется дальним резервированием смежного или следующего участка.

Чувствительность защиты должна быть такой, чтобы она действовала при к.з. в конце установленной для неё зоны в минимальном режиме работы системы и при замыканиях через электрическую дугу.

Чувствительность защиты можно оценить коэффициентом чувствительности Кч. Для защит, реагирующих на ток к.з.

,

где Iк.min – минимальный ток к.з., Iс.з – ток срабатывания защиты.

  1. Надёжность.

Требование надёжности состоит в том, что защита должна правильно и безотказно действовать в пределах установленной для неё зоны и не должна работать неправильно в режимах, при которых её работа не предусматривалась.

Ненадёжная защита сама становится источником аварий.

При эксплуатации возможны следующие виды отказов в функционировании устройств релейной защиты:

  • отказы срабатывания при требуемом срабатывании;

  • излишние срабатывания при повреждениях в защищаемой зоне с требованием несрабатывания;

  • ложные срабатывания при отсутствии повреждений в защищаемой зоне.

Требование надёжности обеспечивается совершенством принципов защиты и конструкцией аппаратуры, простотой выполнения, а также уровнем эксплуатации.

Требования к релейной защите от ненормальных режимов:

Защиты от ненормальных режимов также должны обладать селективностью, достаточной чувствительностью и надёжностью. Но быстродействия у защит от ненормальных режимов, как правило, не требуется.

Ненормальные режимы часто носят кратковременный характер и самоликвидируются. Например, при кратковременных перегрузках при пуске асинхронного электродвигателя быстрое отключение не только не является необходимым, но и может причинить ущерб потребителям. Поэтому действие на отключение защит от ненормальных режимов должно производиться с выдержкой времени и только тогда, когда наступает опасность для защищаемого оборудования.

В случаях, когда устранение ненормального режима может произвести дежурный персонал электроустановки, защита от ненормальных режимов может выполняться с действием на предупредительный сигнал.

3. Повреждения и ненормальные режимы в электроустановках.

Большинство повреждений в электроустановках приводит к коротким замыканиям (к.з.) фаз между собой или на землю. В обмотках электрических машин (генераторов, трансформаторов и электродвигателей), кроме того, бывают замыкания между витками одной фазы (витковые замыкания).

Основными причинами повреждений являются:

  • нарушения изоляции токоведущих частей, вызванные её старением, неудовлетворительным состоянием, перенапряжениями, механическими повреждениями;

  • ошибки персонала при операциях с электрооборудованием (отключение разъединителя под нагрузкой, включение разъединителя на ошибочно оставленное заземление, включение заземляющих ножей под напряжение и т.п.). Короткие замыкания (к.з.) являются наиболее опасными и тяжелыми видами повреждений.

При коротком замыкании э.д.с Е источника питания (генератора) замыкается «накоротко» через относительно малое сопротивление генератора, трансформатора и линий. В контуре замкнутой накоротко э.д.с. возникает большой ток Iк, называемый током к.з.

При к.з. из-за увеличения тока возрастает падение напряжения в элементах системы, что приводит к понижению напряжения во всех точках сети, так как напряжение в любой точке М (см. рисунок 1.1) UМ = Е - IЗА Zм , где Е - э.д.с. источника питания, Zм – сопротивление от источника питания до точки М.

Наибольшее снижение напряжения происходит в месте к.з.

Увеличение тока и снижение напряжения, происходящие в результате к.з., приводят к ряду опасных последствий:

Понижение напряжения при к.з. нарушает работу потребителей.

Основным потребителем электроэнергии являются асинхронные электродвигатели, момент вращения которых MД пропорционален квадрату напряжения U на их зажимах: MД = КU2. При глубоком снижении напряжения момент вращения электродвигателей может оказаться меньше момента сопротивления механизмов, что приводит к их остановке. Кроме того, из-за снижения напряжения при к.з. также нарушается нормальная работа осветительных установок и компьютерной техники. Нарушение устойчивости параллельной работы генераторов является наиболее тяжелым последствием снижения напряжения при к.з. Это может привести к распаду энергосистемы и прекращению электроснабжения всех её потребителей

Аварии с нарушением устойчивости системы по величине ущерба являются самыми тяжелыми.

В зависимости от числа замкнувшихся фаз к.з. подразделяются на трёхфазные, двухфазные и однофазны; замыкания с землёй и без земли; замыкания в одной и двух точках сети (таблица 1-1).

Таблица 1-1 - Основные виды повреждений в электроустановках.

Трёхфазные замыкания:

замыкания между тремя фазами К(3)

Трёхфазные замыкания на землю К(1, 1, 1)

Двухфазные замыкания:

замыкания между двумя фазами К(2)

Двухфазные замыкания на землю К(1. 1)

Двойные замыкания на землю

Однофазные замыкания на землю

Разрыв фазы

Ненормальными режимами, связанными с отклонением от допустимых значений тока, напряжения и частоты и представляющими опасность для электроснабжения потребителей электроэнергии и энергосистемы в целом, являются: перегрузка оборудования, повышение напряжения, качания в системе.

Перегрузка оборудования – это превышение тока по оборудованию сверх номинального значения.

Если ток превышает номинальное значение, то за счёт выделяемого им дополнительного тепла через некоторое время температура токоведущих частей и изоляции превысит допустимую величину, что приведёт к ускоренному износу изоляции и её повреждению.

Характер зависимости допустимой длительности перегрузки от величины тока: t = (I) показан на рисунке 1.4 и определяется конструкцией оборудования и типом используемых в оборудовании изоляционных материалов.

Рисунок 1.4 – Зависимость допустимой длительности перегрузки от величины тока.

Для предупреждения повреждения оборудования при перегрузках необходимо принимать меры по разгрузке или отключению оборудования.

Повышение напряжения – это превышение напряжения на оборудовании сверх допустимого значения.

Обычно повышение напряжения возникает на гидрогенераторах при внезапном отключении его нагрузки из-за увеличения частоты вращения и возрастания вследствие этого э.д.с. статора до значений, опасных для его изоляции.

Опасное для изоляции повышение напряжения может возникнуть также при одностороннем отключении или включении длинных линий электропередачи с большой ёмкостной проводимостью.

При повышениях напряжения необходимо его снижать вручную или отключать оборудование от сети.

Качания в системах – периодическое изменение ("качание") тока, напряжения, активной и реактивной мощности.

Качания возникают при выходе из синхронизма работающих параллельно генераторов и сопровождаются возрастанием тока и снижением напряжения в сети. На эти изменения тока и напряжения защиты реагируют также, как и на симметричное к.з.

Соседние файлы в предмете Релейная защита и автоматика