Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билеты по физике 11-30.doc
Скачиваний:
91
Добавлен:
09.04.2015
Размер:
1 Mб
Скачать

Сила тока в проводнике прямо пропорциональна напряжению на его концах и обратно пропорциональна его сопротивлению.

Если I — сила тока, U — напряжение, a R — сопротивление, то

I =

Этот закон носит название закона Ома, по имени ученого, его открывшего.

Часто бывает нужно регулировать силу тока в цепи. Для этого используются специальные приборы, называемые реостатами. В реостате проволока, сделанная из материала с большим удельным сопротивлением, намотана на керамический цилиндр. Над обмоткой расположен металлический стержень, по которому может перемещаться контакт. Контакт прижимается к обмотке; при его перемещении меняется длина обмотки, по которой проходит ток, и соответственно сопротивление реостата. Реостат и его условное обозначение на схемах показаны на рисунке 17.

Закон ома для полной цепи

Пусть за время t через поперечное сечение проводника пройдет электрический заряд q. Тогда работу сторонних сил при перемещении заряда можно записать так:

Аст = q.

Согласно определению силы тока

q = It.

Поэтому

Аст = It .

При совершении этой работы на внутреннем и внешнем участках цепи, сопротивления которых R и r, выделяется некоторое количество теплоты Q. По закону Джоуля—Ленца оно равно:

Q = I Rt + I r.

Согласно закону сохранения энергии

A = Q.

Следовательно,

= IR + Ir.

Произведение силы тока на сопротивление участка цепи часто называют падением напряжения на этом участке. Таким образом, ЭДС равна сумме падений напряжений на внутреннем и внешнем участках замкнутой цепи. Обычно это выражение записывают так:

I = /( R + r ).

Эту зависимость опытным путем получил Г. Ом, и называется она законом Ома для полной цепи и читается так:

Сила тока в полной цепи прямо пропорциональна эдс источника тока и обратно пропорциональна полному сопротивлению цепи.

При разомкнутой цепи ЭДС равна напряжению на зажимах источника и, следовательно, может быть измерена вольтметром.

f 214. Ядерные силы

В состав ядра входят протоны, испытывающие взаимное кулоновское отталкивание, и нейтроны. Устойчивость ядер, не разлетающихся под действием кулоновских сил отталкивания, свидетельствует о том, что в ядрах действуют специфические силы притяжения, называемые ядерными силами. Ядерные силы не могут быть обычными силами кулоновского взаимодействия. Кулоновское взаимодействие между протоном и протоном сводится к отталкиванию, а между нейтроном и протоном, нейтроном и нейтроном отсутствует. Электрические силы зависят от заряда и малы по сравнению с ядерными. Гравитационные силы также не могут удерживать частицы в ядре, так как они слишком малы. Например, гравитационное взаимодействие двух протонов в 1036 раз меньше их кулоновского взаимодействия. В роли ядерных сил не могут выступать и силы магнитного взаимодействия. Расчеты ' показывают, что энергия' магнитного взаимодействия, например протона и нейтрона в ядре атома дейтерия |Н, составляет около 0,1 МэВ, что гораздо меньше энергии связи нуклонов в ядре (2,2 МэВ).

Все это говорит о том, что ядерные силы не могут быть сведены ни к электрическим, ни к магнитным, ни к гравитационным, а представляют собой специфический вид сил.

Взаимодействие между нуклонами в ядре является примером сильных взаимодействий — взаимодействий через ядерные силы.

Ядерные силы обладают рядом отличительных свойств: