Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Яблоков. Химия. ч.1. Теоретические основы курса (2009).doc
Скачиваний:
53
Добавлен:
08.04.2015
Размер:
3.8 Mб
Скачать

4.1. Закон термического равновесия

Для одноатомных газов кинетическая энергия есть энергия поступательного движения. Из классической механики известно, что энергия поступательного движения частицы определяется её скоростью и массой.

, (4.1)

где mусредненная масса и средняя скорость движения атомов.

Из статистической физики следует, что средняя кинетическая энергия частицы, обладающей только поступательным движением, прямо пропорциональна свойству системы – температуре Т.

, (4.2)

где k – постоянная Больцмана; T – абсолютная температура.

Совместное решение уравнений (4.1) и (4.2) приводит к выражению абсолютной температуры как величины, прямо пропорциональной средней кинетической энергии микрочастиц системы

. (4.3)

Для таких объектов, как атомы, например атомы инертных (благородных) газов, температура определяется энергией поступательного движения. В случае многоатомных молекул кинетическая энергия включает энергию различных видов движения. Представим модель трехатомной молекулы в виде шариков, связанных пружинками. Для такой молекулы характерна энергия поступательного, колебательного движения атомов в молекуле, а также вращательного и деформационного движения (рис. 33).

Екин. = Епост. + Еколеб. + Евращ. + Едеформ.

Рис. 33. Формы движения трехатомной молекулы

Для системы, состоящей из громадного числа микрочастиц разной массы и совершающих разнообразные движения, а не только поступательное движение, температура системы является отражением всех форм движения частиц и абсолютная температура системы Т определяется средней кинетической энергией микрочастиц.

Рассмотрим построение термометрической шкалы на примере расширения – сжатия газа. Для идеального газа характерны два свойства: 1) объем молекул газа, много меньше объема, занятого всем газом; 2) радиус взаимодействия двух молекул значительно меньше среднего расстояния между ними.

Идеальных газов как таковых не существует, но можно взять инертный газ или молекулярный азот. Они с успехом выполняют функцию идеального газа.

Заполним газом сосуд постоянного объема (V = const). Измерим давление газа (р2) в сосуде при температуре кипящей воды (Т2) и давление газа (р1) при температуре таящего льда (Т1). При постоянном атмосферном давлении

(р = 1 атм) эксперимент всегда дает одно и то же отношение давлений газа в кипящей воде и плавящемся льду:

.

Сделаем первое допущение, примем, что отношение давлений прямо пропорционально отношению температур

,

тогда . (4.4)

Введем второе допущение, примем, что разность температур Т1 и Т2 равна 100

Т2Т1 = 100. (4.5)

Совместное решение уравнений (4.4) и (4.5) позволяет установить численное значение температуры кипения воды и плавления льда по так называемой абсолютной шкале температур. Температура кипения воды Т2 = 373.15 К, а температура плавления льда Т1 = 273.15 К. Абсолютная шкала температур всегда положительна. Она введена английским физиком У. Томсоном (лордом Кельвином).

Закон термического равновесия утверждает, что две системы, находящиеся в термическом равновесии с третьей системой, состоят в термическом равновесии друг с другом (рис. 34).

Т1

Т2

Т3

Рис. 34. Термическое равновесие между телами. Если Т1 = Т3 и Т2 = Т3, то Т1 = Т2