Добавил:
nastia.sokolowa2017@yandex.ru Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вопросы к зачету и литература.docx
Скачиваний:
0
Добавлен:
19.02.2024
Размер:
352.73 Кб
Скачать

19. Электровакуумные приборы и газоразрядные приборы.

Определение. Электровакуумными называют приборы, принцип работы которых основан на использовании электрических явлений в газах или вакууме, происходящих в рабочем пространстве, изолированном от окружающей среды газонепроницаемой оболочкой (баллоном).

Электровакуумные и газоразрядные приборы выполняются в виде стеклянного, керамического или металлического баллона, внутри которого в условиях высокого вакуума или инертного газа размещаются электроды: катод, анод, сетки. Катод является излучателем (эмиттером) свободных электронов, анод - собирателем (коллектором) носителей заряда. С помощью сеток или управляющих электродов осуществляется управление анодным током.

Для того, чтобы получить представление об электровакуумных и газоразрядных приборах используемых в авиационном РЭО рассмотрим их классификацию.

Классификация и условное графическое обозначение

1. По количеству электродов электронные приборы делятся на двухэлектродные (электровакуумные диод), трехэлектродные (электровакуумный триод), и многоэлектродные лампы.

Рис. 1. Условное графическое обозначение электровакуумного диода

2. По конструктивным особенностям цепи накала электронные лампы делятся на лампы с катодами прямого накала и лампы с катодами косвенного накала.

3. По назначению лампы делятся на приемо-услительные, генераторные, частотно-преобразовательные, детекторные, измерительные и так далее.

4. В зависимости от диапазона рабочих частот различают лампы низких (от 1 - 30 МГц), высоких (от 30 до 600 МГц) и сверхвысоких (свыше 600 МГц) частот.

5. По виду электронной эмиссии различают лампы с термоэлектроннойвторичной и фотоэлектронной эмиссией.

20. Электрофизические свойства полупроводниковых материалов. Полупроводниковые резисторы.

Полупроводники – это большая группа веществ с электронной проводимостью, удельное сопротивление которых при нормальной температуре изменяется в пределах от 10–6 до 10+8 Ом·м.

Электропроводность полупроводников в большой степени зависит от внешних энергетических воздействий, а также от различных примесей, иногда в ничтожных количествах присутствующих в теле собственного полупроводника.

Использующиеся в практике полупроводники могут быть подразделены на простые полупроводники (их основной состав образован атомами одного химического элемента) и сложные полупроводниковые композиции, основной состав которых образован атомами двух или большего числа химических элементов. В настоящее время активно изучаются и внедряются в производство стеклообразные и жидкие полупроводники.

В зависимости от влияния примесей на проводимость различают собственные и примесные полупроводники.

Собственный полупроводник – полупроводник не содержащий примесей, влияющих на его электропроводность.

Для большинства полупроводниковых приборов используются примесные полупроводники. Примесями в простых полупроводниках служат чужеродные атомы. Под примесями в полупроводниковых химических соединениях понимают не только включения атомов посторонних элементов, но и избыточные по стехиометрическому составу атомы тех самых элементов, которые входят в химическую формулу самого соединения.

Если примесные атомы находятся в узлах кристаллической решетки, то они называются примесями замещения, если в междоузлиях – примесями внедрения.

Полупроводниковый резистор — это прибор с двумя выводами, электрическое сопротивление которого зависит от управляющих воздействий: напряжения, температуры, освещения и т.д. В полупроводниковых резисторах применяется полупроводниковый материал, равномерно легированный примесями. Тип примеси и конструкция резистора определяют функциональные свойства резистора. Существует следующая классификация полупроводниковых резисторов: линейные резисторы, варисторы, тензорезисторы, фоторезисторы и терморезисторы, в свою очередь разделяющиеся на термисторы и позисторы.