Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теория эволюции лекция 1-9.docx
Скачиваний:
46
Добавлен:
20.01.2022
Размер:
309.06 Кб
Скачать

Популяционная структура вида

Границы и размеры популяций в природе определяются особенностями не только заселяемой территории, но в первую очередь свойствами самой популяции. Здесь всегда лежит степень ее генетического и экологического единства. Раздробление вида на множество мелких территориальных группировок носит приспособительный характер к большому разнообразию местных условий, что увеличивает генетическое многообразие вида и обогащает его генофонд. Таким образом, наиболее общим правилом является то, что индивиды любого живого вида всегда представлены не изолированными отдельностями, а их определенным образом организованными совокупностями. Это правило было сформулировано в 1903 г. С. С. Четвериковым (1880—1959) и получило название правила объединения в популяции.

Каждый вид представляет собой систему более элементарных подразделений – популяций различного ранга. Так, Мамонтово дерево, распространенное в горах Сьерра-Невада, сейчас представлено 36 рощами (экологическими популяциями), несколькими местными и одной географической популяцией.

Мамонтово дерево (Sequoiadendron giganteum) – перекрѐстно- опыляющееся при помощи ветра хвойное дерево – встречается в сосново- пихтовых лесах на небольших высотах (1500 - 2400 м) на западных склонах гор Сьерра-Невада в Калифорнии. Область его распространения образует узкую полосу протяженностью около 400 км. В пределах этой области мамонтово дерево встречается в виде ряда обособленных и более или менее разобщѐнных популяций

Число локальных популяций по разным оценкам колеблется от 32 до 75 в зависимости от того, считать ли популяции в форме гантелей за одну или за несколько.

В самом начале XX в. различаемые здесь локальные популяции имели размеры от 6 до 20 000 деревьев. Мелкие популяции называют рощами, а крупные, за немногими исключениями – лесами. Рощами являются экологическими популяциями, они объединяются в несколько местных и одну географическую популяцию.

В настоящее время границы локальных популяций определяются, по крайней мере в некоторых исследованных случаях, влажностью почвы.

У реликтов и неореликтов популяционная структура вида, как правило, проще. Например, роща пицундской реликтовой сосны обнаружена только на полуострове Пицунда. Поэтому популяционная структура этого вида такова: одна экологическая популяция, которая одновременно есть и локальная, и географическая.

Популяционная структура вида формируется в процессе эволюции под контролем естественного отбора.

Внутрипопуляционный полиморфизм

При внутрипопуляционном полиморфизме внутри единой популяции существуют резко различные, наследственно обусловленные фенотипы (морфы). Различают диморфизм (половой и сезонный), возрастной полиморфизм, фазовость, полиморфизм колоний.

Половой диморфизм это различие полов по внешним признакам, обусловленное генетическими факторами. Например, самец бабочки крушинницы (лимонницы) имеет лимонно-желтую окраску, а самка – белую. У самцов бабочки голубянки цвет крыльев голубой, а у самок – темно-бурый.

Сезонный диморфизм – различие во внешнем виде организмов одного вида в различные сезоны. Коловратки и дафнии летом и осенью имеют разную форму тела.

У общественных насекомых имеется социальный полиморфизм - наличие в семье фенотипически разных групп особей: половых, рабочих, солдат.

При возрастном полиморфизме наблюдаются значительные отличия между личинками и взрослыми. Например, у клешей, насекомых, ракообразных.

Фазовость – фазовая изменчивость, изменение фенотипа особей, определяемая плотностью популяции. Например, у саранчи особи стадной фазы и одиночной фазы отличаются внешне, физиологией и поведением.

Сопряженный полиморфизм – одновременное сохранение нескольких морф в популяции, имеющих преимущество в разных условиях среды. Так, двуточечная божья коровка имеет 2 морфы: красную – хорошо размножающуюся, и черную – хорошо переносящую зимние условия.

Полиморфизм имеет большое биологическое значение, так как он обеспечивает существование вида в разнообразных условиях, дает материал дивергенции – расхождения признаков и групп особей, позволяет популяции лучше использовать многообразные условия среды.

Генетические характеристики популяции

Генетически популяции характеризуются:

Генофондом – совокупностью всех генов всех членов популяции Генетическим единством, обусловленным панмиксией.

Наследственным разнообразием генофонда – генетической гетерогенностью генофонда, обусловленной мутационным процессом, потоком генов (миграцией), рекомбинацией.

После широкого применения в исследованиях гель-электрофореза (метода, выявляющего отличия белков и ферментов по различию в подвижности в электрическом поле), было обнаружено, что обычное состояние генофонда у организмов с перекрестным оплодотворением – это гетерозиготность особей популяции. Генетическая изменчивость природных популяций, судя по данным, полученным с помощью электрофореза в геле, удивительно велика.

Так, беспозвоночные более изменчивы, чем позвоночные (13,4 % и 6,6

%), а растения изменчивы еще более (17 %). Степень гетерозиготности человека 6,7 %. Что это значит? Если допустить, что у человека в генотипе имеется 100 тыс. генных локусов, то каждый индивидуум будет гетерозиготен по 6700 локусам. Вот почему человеку свойственен высокий уровень наследственного разнообразия. Это проявляется в многообразии фенотипов: люди отличаются друг от друга цветом кожи, глаз, волос, формой губ, носа, ушной раковины, рисунком эпидермальных гребней на подушечках пальцев, голосом, отпечатком губ, запахом, группой крови и многими другими признаками.

Установлено, что чем шире диапазон генетической изменчивости популяции, тем быстрее она эволюирует.

Резерв наследственной изменчивости. Это "мобилизационный" резерв рецессивных мутаций, который формируется многими поколениями. С. С. Четвериков с сотрудниками в 1926 г. начал исследовать природные популяции дрозофилы. Инбридировалось потомство диких самок, пойманных в разных частях СССР. Обнаружилось, что многие гетерозиготные особи, будучи фенотипически нормальными, несли в скрытом виде рецессивные мутации.

Эти мутации оказались вне воздействия естественного отбора: они сохранялись и накапливались в гетерозиготах под покровом доминантных аллелей. Этот резерв, благодаря комбинативной изменчивости, используется для создания в каждом поколении новых комбинаций аллелей, а значит и новых вариантов признаков и фенотипов.

В популяции имеются большие запасы таких аллелей, которые не обладают максимальной приспособленностью в данном месте и в данное время. Они сохраняются в генофонде, встречаясь с низкой частотой в гетерозиготном состоянии до тех пор, пока вследствие изменения условий в экосистеме аллели не окажутся способствующими большей выживаемости и размножаемости тем особям, у которых эти аллели имеются. Отбор после этого быстро увеличивает их частоту. Селективная ценность аллеля – непостоянная величина, независимо от того, какой признак он контролирует. Среда изменяется во времени и в пространстве. Из-за этого одни условия в одном местообитании будут благоприятны для особей с данным вариантом гена, а другие – в другом местообитании – для другого варианта гена.

Большая популяция имеет больший генофонд и больший резерв наследственной изменчивости, поэтому она более защищена от изменений среды: при резком изменении среды большая популяция мобилизует генетические резервы и может пережить стрессовый период, а малая популяция имеет малый мобилизационный резерв и поэтому не сможет "дать ответ" экстремальным условиям в форме выживших и размножающихся особей. Один из механизмов сохранения гетерозигот – их превосходство (сверхдоминирование).

С развитием методов цитологии, биохимии и молекулярной биологии появились новые подходы к анализу генетической изменчивости. Результаты применения этих подходов показали, что запасы генетической изменчивости гораздо более богаты, чем мы думали до сих пор.

Анализ хромосом многих видов растений и животных показал, что под внешним сходством отдельных особей и популяций внутри вида иногда скрывается фантастическое разнообразие кариотипов, обусловленное инверсиями, делециями, дупликациями, транслокациями. В популяциях некоторых видов дрозофил и комаров были обнаружены гетеро- и гомозиготы по нескольким инверсиям. Виды отличались друг от друга, как по набору, так и по частоте встречаемости этих хромосомных перестроек. Практически во всех популяциях домовой мыши обнаружены носители множественных дупликаций определенного гена. У обыкновенной бурозубки Sorex araneus L. более 60 хромосомных рас — популяций, которые отличаются друг от друга по кариотипам. Это разнообразие обусловлено закреплением в каждой pace специфических транслокаций.

Анализ последовательности аминокислот в белках показал, что множество белков у живых организмов представлено не одной, а несколькими формами, которые отличаются друг от друга заменами отдельных аминокислот. В большинстве популяций всех изученных видов животных и растений было обнаружено значительное разнообразие этих форм. Так в популяциях человека обнаружено несколько разных аллелей генов, кодирующих молекулы гемоглобина, найдено множество разных аллелей генов, контролирующих синтез ферментов.

Но самую впечатляющую картину огромной генетической изменчивости дал прямой анализ последовательностей нуклеотидов в ДНК. Оказалось, что практически каждый ген представлен в популяции не одной, а двумя и более формами, которые отличаются друг от друга заменами хотя бы одного нуклеотида.

Все эти данные показывают, что все популяции животных и растений накопили за время своего существования гигантские запасы генетической изменчивости. Пополнение этих запасов происходит постоянно за счет мутационного и рекомбинационного процессов. Эти запасы создают потенциал для эволюции, возможность многообразных изменений, адаптаций к постоянно и непредсказуемо меняющейся среде, в которой живут и меняются вместе с ней все живые организмы.

Генетический груз. В генофонде популяции имеются вредные мутации, которые при переходе в гомозиготное состояние снижают жизнеспособность особей или вызывают их гибель. Генетический груз — это совокупность летальных и полулетальных мутаций, мутаций стерильности и мутаций, понижающих жизнеспособность особей.

Также аллели, входящие в генетический груз, могут иметь селективную ценность. Так, рецессивный аллель, вызывающий в гомозиготном состоянии серповидную форму эритроцитов и гибель людей, в популяциях, страдающих от малярии, имеет частоту 30 %. Это связано с тем, что гетерозиготы лучше выживают в малярийных районах, чем гомозиготы по доминантному аллелю этого гена.

Биохимический полиморфизм. Этот термин вначале применялся в основном по отношению к морфологическим признакам. Биохимический полиморфизм – это белковый полиморфизм, результат множественного аллелизма: наличие в генофонде популяции нескольких вариантов генов ведет к полиморфизму одного и того же вещества. Гистонесовместимость вызывается именно полиморфизмом белков – у каждого человека свои варианты белков. Антитела также формируются определенными аллелями гена, и они у каждого человека "свои". Группа крови системы АВО – тоже пример полиморфизма белков. У человека обнаружено 14 различных систем групп крови, АВО – одна из них. У людей известно 130 структурных вариантов гемоглобина, 70 вариантов глюкозо-6-фосфатдегидрогеназы, осуществляющей анаэробное расщепление глюкозы до лактата в эритроцитах, 20 вариантов трансферина – бетаглобулина, переносящего железо из кишечника в костный мозг, более десятка вариантов сывороточного альбумина, 5 разных изоферментов лактатдегидрогеназы.

Генетическая структура популяций

Частоты аллелей и генотипов. Генетическую структуру популяции мы можем описать, определив частоты генотипов в ее генофонде. Для этого нам нет необходимости обследовать всех особей этой популяции. Биологи, как правило, анализируют выборку особей из популяции. Чем больше эта выборка, тем точнее она представляет реальное соотношение частот генотипов в популяции. В качестве материала используются полевые наблюдения, данные лабораторных анализов полевых сборов или музейных экземпляров и даже архивные данные.

Сравнение разных популяций по частотам аллелей дает нам информацию о генетической гетерогенности видов в разнообразных условиях его обитания.

Ожидаемые частоты аллелей и генотипов можно определить по закону Харди – Вайнберга. Этот закон действует при следующих условиях. Предполагается, что популяция достаточно велика, для того чтобы ошибки выборки не оказывали существенного влияния на частоты в последовательных поколениях. Популяция изолирована, иммиграция отсутствует, составляющие популяцию особи вносят равное число функционирующих гамет; иными словами, разные генотипы размножаются одинаково успешно. И наконец, предполагается, что в популяции преобладает случайное скрещивание.

В популяции, соответствующей указанным выше условиям, согласно закону Харди – Вайнберга, частоты аллелей будут оставаться постоянными из поколения в поколение, и при случайном скрещивании в одном поколении генотипы достигнут равновесных частот, которые сохранятся в дальнейшем.

Популяция, в которой соотношение генотипов соответствует уравнению Харди – Вайнберга, называется равновесной. Равновесие частот генотипов в популяции поддерживается из поколения в поколение, если не нарушаются условия выполнения статистических закономерностей, то есть если скрещивания случайны, жизнеспособность особей с разными генотипами одинакова, а также не происходит изменения частот аллелей за счет мутаций, миграций или каких-либо других факторов.

Чтобы решить вопрос о том, находится ли та или иная популяция в состоянии равновесия, мы должны сравнить наблюдаемые соотношения генотипов с теми, которые должны были быть в этой популяции согласно уравнению Харди – Вайнберга.

Известно несколько факторов, которые могут нарушать равновесие генотипов в популяции.

мутационный процесс

  • низкая численность популяций

  • избирательность скрещиваний

  • миграции

  • естественный отбор

Ранее мы определили эволюцию как изменение частот аллелей в популяции в ряду поколений. Поэтому мы можем рассматривать факторы, нарушающие равновесное состояние популяций, как факторы эволюции.