Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
0
Добавлен:
01.04.2024
Размер:
1.64 Mб
Скачать

Waveguide Switchable Bandstop and Bandpass

Filters Using RF MEMS Switches

K. Y. Chan, R. Ramer

School of Electrical Engineering and Telecommunications

The University of New South Wales

Sydney, Australia kyc@unsw.edu.au, ror@unsw.edu.au

Abstract—Waveguide switchable bandstop and bandpass

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

filter designs are demonstrated in this paper. The designs are

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

based on the design of rectangular waveguide that has

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

switching

planar

bandstop

resonators

inserted

on the

 

 

 

 

 

Switching

 

 

 

MEMS model

 

 

ON-state

 

 

 

 

OFF-state

 

 

sidewall. These

switchable

bandstop

resonators

consist

of

 

 

 

 

 

Elements

 

 

 

 

 

 

 

 

 

 

 

 

 

Resonator

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

two identical metal patches separated by switching elements.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Length (L)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The

switching

 

elements

can

be

of

RF

MEMS

or

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

semiconductor transistor type. These resonators allow

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

electrically switching of the waveguide while providing close

 

 

 

 

 

 

(a)

 

 

Transistor model

 

 

ON-state

 

 

 

 

OFF-state

 

to ideal on-state insertion loss and narrow stop band during

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

off-state. These switches permit the switchable bandstop and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bandpass filters design. The concept is demonstrated for a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

switchable five-pole bandstop filter and a switchable three-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pole bandpass filter, both at the centre frequency of 14.25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GHz and for 500 MHz bandwidth.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Switches off

 

 

 

 

 

 

 

 

Switches on

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I. INTRODUCTION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Multi-band operation will become

 

a

standard

 

Fig.

1.

(a)

Switchable

planar

 

resonator located

inside

a

typical

 

in rectangular

waveguide,

(b)

the

designs

 

and

circuit models

when

using

adaptive

and

 

reconfigurable

 

RF

frontends.

Achieving

MEMS and transistors, and (c) the EM propagation when the switches

multi-standard

 

 

while

 

 

maintaining

 

 

low-cost

 

andare off and on.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

compactness are becoming a trend in

communication

 

 

 

II. WAVEGUIDE SWITCH DESIGN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

systems. Devices in the RF frontend, such as antennas,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

switches, matching networks, phase shifters, directional

to

The design of our waveguide switch is based on a low

couplers

and

 

 

filters,

 

will

 

all

be

 

required

 

be

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q-factor switchable planar resonator. This resonator is

reconfigurable in the future. Some

 

antenna

 

designs designed

to

operate

within a

 

rectangular

waveguide,

in

showing promising results have been

reported

[1-5].

particular, attached

on

the

narrow sidewall,

as illustrated

However,

the most

critical

ones,

switches and

filters,

still

 

in

Fig.

1.

The concept

utilizes

 

the

 

planar

resonator

to

require significant research and development, especially in

 

 

 

 

 

 

create

a

bandstop

notch

at

 

a narrow band of frequencies

the

waveguide

technology.

If

 

conventional

waveguide

 

 

when

the switches

between the

 

two

 

patches are

 

 

 

enabled.

switches, typically rotary mechanical are well researched

 

 

 

 

 

 

 

When the switches are disabled, the band

stop

 

 

notch

is

and competing with the semiconductor PIN diodes, FET

 

 

 

switches

and

RF

MEMS

the

reconfigurable

waveguide

also disabled and therefore, the waveguide will permit

filter research is still limited [6]-19].

 

 

 

 

 

 

 

 

transmission.

The

switching

 

elements

can

 

 

 

be

of

RF

Reconfigurable filters reported in the literature

were

 

MEMS type or semiconductor transistor type. Due to the

 

most utilizing semiconductor PIN diodes and FET types,

 

planar nature, only low Q-factor value could be achieved

 

ferroelectric type, and RF MEMS type

switches

 

and

even when the resonator is operating inside a waveguide.

 

varactors. They offer the necessary reconfigurability and

 

They

are

easy

 

to

 

fabricate

 

 

and

can

 

 

 

 

 

be

switche

the required bandwidth; their achievable

Q-factors

are

electronically with minimal special modification to the

limited when compared with the waveguide counterparts.

 

waveguide.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One solution to achieve waveguide reconfigurable filters is

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to combine waveguide switches with filters. To authors’

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

knowledge, partial research has been performed. Most

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

researchers only reported waveguide switches aiming to

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

improve either size and cost or the RF performance. One

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

group reported movable MEMS cantilevers with ridge

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

waveguide [20]. Another utilised a reconfigurable mesh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with MEMS actuator that covers the entire propagation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

plane

[21].

In this paper, a concept

of

combining

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

waveguide switches together with filters

together

is

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

presented. The basic waveguide switch will be discussed,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

followed by the bandstop and bandpass filter examples.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

978-1-7281-2168-0/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: University of Canberra. Downloaded on June 06,2020 at 13:23:39 UTC from IEEE Xplore. Restrictions apply.

(b)

(c)

Fig. 2. Simulated (a) centre frequency 0(),f (b) phase(φ), and (c)x/Z0, with different L and W values.

III. WAVEGUIDE SWITCHABLE BANDSTOP FILTER DESIGN

A bandstop filter (5-pole) using Fig. 2 and the topology in Fig. 3, with the simulation model, is given in Fig. 4; the planar resonators are placed on a quartz substrate (500um

thick) at the narrow sidewall of the WR62

waveguide.

With switches inserted at the centre of each resonator, on

and off states were achieved, and Fig.

5 shows the

simulation results. As can be seen from the simulations, when the switches are on, the desired bandstop filter is enabled. This stop band has a 500 MHz bandwidth with a rejection of -20 dB. Due to the low Q-factor of the planar

resonators,

the in-band return

loss

(S) has a significant

 

 

 

11

 

loss. However, this is not a

critical issue

for most

bandstop

filter requirements

as

the in-band

reflected

power is excessive. When the resonators’ switches are on, the waveguide behaves as a typical rectangular waveguide with a minimal insertion loss and a return loss of better than 20 dB for the band of interest.

Fig. 4. Waveguide switchable bandstop filter simulation model.

With these resonators, the waveguide switch is only capable of operating with a very narrow bandwidth, as the resonance only occurs at a single frequency. In order to achieve a wider bandwidth, unique designs are required. One method of achieving wider bandwidth is to cascade band stop notches to form a bandstop filter. However, in order to design a bandstop filter properly, it is essential to

determine the equivalent circuit model of

the

planar

resonator operating in a rectangular waveguide with TE

 

 

mode as the only propagating mode.

 

 

10

 

 

 

 

 

 

 

Three properties have to be studied in order to produce

 

an equivalent circuit model; they

are

the

resonance

frequency, f0, the equivalent guided length,φ, and the

 

normalized reactance, x/Z0.

These parameters

can

be

calculated by analyzing the S-parameters and correlating

 

them with the L and W of the resonator. As an example, a

 

bandstop waveguide filter with a

centre

frequency

of

14.25 GHz and a bandwidth of 500 MHz will be studied.

 

Fig. 2 demonstrated the simulation results. As can

be

noticed, different normalized

reactance

and guided

phase

 

lengths are achievable at a single frequency. By using a bandstop filter topology as in Fig. 3 and proper L and W

values, different filters

with

customised

bandwidths can

be achieved.

 

 

 

 

 

1

1

2

2

3

3

1

λ

2

 

λ

3

4

 

4

0

0

 

0

 

 

 

Fig. 3. bandstop filter topology with guided length,φ, the normalized reactance, x/Z0, and the guided wavelength λ.

(a)

(b)

Fig. 5. Waveguide switchable bandstop filter simulation results: (a) on state and (b) off state.

IV. WAVEGUIDE SWITCHABLE BANDPASS FILTER DESIGN

These switchable resonators could be used to design

waveguide switchable

bandpass

filters. However, the

designs have to be

based

on traditional rectangular

bandpass filter topologies. As an example, a waveguide iris bandpass filter with a centre frequency of 14.25 GHz and a bandwidth of 500 MHz was selected as the basis of the design. The concept is to insert a switchable bandstop resonator into each rectangular waveguide cavity. Fig. 6

Authorized licensed use limited to: University of Canberra. Downloaded on June 06,2020 at 13:23:39 UTC from IEEE Xplore. Restrictions apply.

shows

the

circuit

model

of

one

 

switchable

resonator

 

Ratio and Reduced Sidelobe Level,"IEEE Antennas and Wireless

 

placed

within

a waveguide

cavity.

As

in

the

figure,

the

[2]

Propagation Letters, vol. 15, pp. 1835-1838, 2016.

 

 

 

 

cavity resonance is generated with a waveguide section of

Y. Yang, Y. Cai, K. Y. Chan, R. Ramer, and Y. J. Guo, "MEMS-

 

 

Loaded Millimeter Wave Frequency Reconfigurable Quasi-Yagi

 

λ/2 long bounded by two impedance inverters. When the

 

Dipole

Antenna," Microwave Conference Proceedings (APMC),

 

planar resonator is enabled, the switch in Fig. 6 is enabled

 

2011 Asia-Pacific, 2011, pp. 1318-1321: IEEE.

 

 

 

 

 

allowing

a

shorted

path

within

the

resonant

cavity

and

[3]

G. I. Kiani, T. S. Bird, and K. Y. Chan, "MEMS Enabled

effectively disabling the cavity resonance. Fig. 7(a) shows

 

Frequency Selective Surface for 60 GHz Applications,"Antennas

 

 

and Propagation (APSURSI), 2011 IEEE International

 

half of the simulated model of the switchable bandpass

 

Symposium on, 2011, pp. 2268-2269: IEEE.

 

 

 

 

 

 

filter (three-pole). Fig. 7(b)

 

illustrates

 

the

simulation

[4]

Y. Yang, K. Y. Chan, N. Nikolic, and R. Ramer, "Experimental

 

results

when

the

switches

are

on

and

off.

As

expected

 

Proof for Pattern Reconfigurability of 60GHz Quasi Yagi

 

from

 

the

circuit

model,

the

passband,

14

to

14.5

GHz

 

Antenna," Microwave and Optical Technology Letters, vol.

57,

 

 

 

no. 1, pp. 84-88, 2015.

 

 

 

 

 

 

 

 

 

 

either has a perfect transmission when the switches are

 

 

 

 

 

 

 

 

 

 

 

[5]

L.

Gong,

K. Chan, and R. Ramer, "A Split-Ring Structures

 

disabled (off) or has a high rejection

 

when

the switches

 

Loaded Siw Sectorial Horn Antenna,"Antennas and Propagation

 

are enabled

(on). However,

as

can

be

 

noticed,

when

the

 

in Wireless Communications (APWC), 2015 IEEE-APS Topical

 

switches

are

enabled,

the

out-of-band

performance

has

 

Conference on, 2015, pp. 349-350: IEEE.

 

 

 

 

 

 

[6]

F. Huang, S. Fouladi, and R. R. Mansour, "High-Q Tunable

 

significant changes and could be unacceptable for some

 

 

Dielectric Resonator Filters Using Mems Technology,"IEEE

 

applications.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transactions on Microwave Theory and Techniques, vol. 59, no.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12, pp. 3401-3409, 2011.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

λ/4

 

 

 

λ/4

 

 

 

 

 

 

 

 

 

 

[7] F. Huang and R. Mansour, "A Novel Varactor Tuned Dielectric

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Resonator

Filter," IEEE

MTT-S

International

Microwave

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symposium Digest (IMS), Seattle, WA, USA, 2013, pp. 1-3.

 

 

 

 

 

Kij

 

 

 

 

 

 

 

 

 

 

 

 

Kij

 

 

 

 

 

[8]

H. Joshi, H. H. Sigmarsson, M. Sungwook, D. Peroulis, and W. J.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chappell,

"High-Q Fully Reconfigurable Tunable

Bandpass

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Filters," IEEE Transactions on Microwave Theory and

 

Fig. 6.

A proposed circuit model of a switchable planar resonator placed

 

Techniques, vol. 57, no. 12, pp. 3525-3533, 2009.

 

 

 

 

[9]

X. Liu, L. P. B. Katehi, W. J. Chappell, and D. Peroulis, "High-Q

 

within a rectangular waveguide resonator that is bounded by impedance

 

Tunable Microwave Cavity Resonators and

Filters

Using Soi-

 

inverters.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based

 

Rf

Mems

Tuners,"Journal

of Microelectromechanical

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Systems, vol. 19, no. 4, pp. 774-784, 2010.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[10]

F. Gentili, F. Cacciamani, V. Nocella, R. Sorrentino, and L.

 

 

 

 

 

 

 

 

rW

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pelliccia, "Rf Mems Hairpin Filter with Three Reconfigurable

 

 

 

 

 

WR62

rL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bandwidth

States," European Microwave

Conference

(EuMC),

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2013, pp. 802-805.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

L1

t

L2

t

 

L1

t

 

 

 

 

 

 

 

 

 

[11]

F. Gentili, V. Nocella, L. Pelliccia, F. Cacciamani, P. Farinelli,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and R. Sorrentino, "Mems-Based Fine Tuning of High Q-Factor

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E-Plane

Filters," International

Journal

of

Microwave

and

 

 

 

 

 

 

 

 

 

 

(a)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wireless Technologies, vol. 6, no. 05, pp. 467-472, 2014.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[12] F. Gentili,

L. Pelliccia, R. Sorrentino, and G. Bianchi, "High Q-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Factor Compact Filters with Wide-Band Spurious Rejection,"

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

European Microwave Conference (EuMC), 2012, pp. 160-163.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[13] L. Pelliccia, P. Farinelli, R. Sorrentino, G. Cannone, G. Favre, and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P.

 

Coassini,

 

"K-Band

Mems-Based

Frequency

Adjustable

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Waveguide

Filters for Mobile Back-Hauling,"International

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Journal of Microwave and Wireless Technologies, vol. 8, no. 4-5,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pp. 751-757, 2016.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[14] H. Rahman, K. Y. Chan, Y. Yang, and R. Ramer, "Fabrication of

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RF

 

NEMS

Series

Switch

Using

Surface

Micromachining,"

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IASTED Intl. Conf. on Nanotechnology and Applications, 2010.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[15] Y. X. Yang,

K. Y. Chan, and R. Ramer,

"Wideband

RF Nano

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Switch

Matrix," Antennas

and

Propagation (APSURSI), 2011

 

 

 

 

 

 

 

 

 

 

(b)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IEEE International Symposium on, 2011, pp. 1605-1608: IEEE.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[16]

E. Siew, K. Y. Chan, R. Ramer, and A. Dzurak, "Design of a RF

 

Fig. 7. (a) Half of the iris waveguide filter loaded with planar switchable

 

 

 

 

Nems

 

Switch

Matrix,"Antennas and Propagation (APSURSI),

 

resonators and (b) its simulation results showing the on and off states.

 

 

 

 

 

 

2011 IEEE International Symposium on, 2011, pp. 12-15: IEEE.

 

 

 

 

 

 

V.

 

 

CONCLUSIONS

 

 

 

 

 

 

 

 

 

[17]

X. Li, K. Y. Chan, and R. Ramer, "Fabrication of through Via

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Holes in Ultra-Thin Fused Silica Wafers for Microwave and

 

This paper presented electrically-controlled waveguide

 

Millimeter-Wave Applications," Micromachines, vol. 9,

no. 3, p.

 

 

138, 2018.

 

 

 

 

 

 

 

 

 

 

 

 

 

switches, switchable bandpass and bandstop filter designs

[18]

L. Gong, K. Y. Chan, and R. Ramer, "A Third Order Bandpass

 

using

 

switchable

resonators.

A

five-pole

 

bandstop

filter

 

Iris Filter with Reconfigurable Dielectric Irises,"Microwave and

 

and a three-pole bandpass filter demonstrating their

 

Optical Technology Letters, vol. 60, no. 5, pp. 1287-1290, 2018.

 

[19]

L. Gong, K. Y. Chan, and R. Ramer, "A

Four-State

Iris

corresponding on and off states with their simulated RF

 

Waveguide Bandpass Filter with Switchable Irises,"Microwave

 

performance are shown. The design examples confirmed

 

Symposium (IMS), 2017 IEEE MTT-S International,

2017, pp.

 

the versatility of our approach, illustrated the potential of

 

260-263: IEEE.

 

 

 

 

 

 

 

 

 

 

 

 

such

 

designs

and

 

highlighted

the

 

simplicity

 

of

their

[20]

M. Daneshmand, R. R. Mansour, and N. Sarkar, "RF MEMS

 

fabrication.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Waveguide

Switch," IEEE Transactions on Microwave Theory

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and Techniques, vol. 52, no. 12, pp. 2651-2657, 2004.

 

 

 

 

 

 

 

 

 

 

 

REFERENCES

 

 

 

 

 

 

 

 

 

 

[21]

Z. Baghchehsaraei and J. Oberhammer, "Parameter Analysis of

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Millimeter-Wave Waveguide Switch Based on a MEMS-

 

[1]

L.

Gong,

K.

Y.

Chan,

and

R.

Ramer,

"Substrate

Integrated

 

Reconfigurable

Surface," IEEE

Transactions

on

Microwave

 

 

Theory and Techniques, vol. 61, no. 12, pp. 4396-4406, 2013.

 

 

Waveguide H-Plane Horn Antenna with Improved Front-to-Back

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Authorized licensed use limited to: University of Canberra. Downloaded on June 06,2020 at 13:23:39 UTC from IEEE Xplore. Restrictions apply.