Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
0
Добавлен:
01.04.2024
Размер:
569.14 Кб
Скачать

19 5

 

Vo1.19 No.5

2021 10

Journal of Terahertz Science and Electronic Information Technology

Oct. 2021

 

 

 

2095-4980(2021)05-0769-10

a a *b

( a. b. 210044)

的交叉前沿应用。滤波器作为太赫兹探测/

 

 

 

TN713

A

doi 10.11805/TKYDA2021246

Review of terahertz waveguide filters research process

ZHANG Qinyia YAN Yutaoa DING Jiangqiao*b

(a.Changwang School of Honors b. School of Electronic & Information Engineering Nanjing University of Information Science & Technology

Nanjing Jiangsu 210044 China)

Abstract Terahertz waves with unique spectrum characteristics have provided important applications in cross frontier fields of astronomical observation, interstellar communication and defense security. As one of the key components in the terahertz detection/communication systems, the filter can extract characteristic signals and suppress interference frequencies to improve the target detection performance of the system. In recent years, thanks to the development of the high-precision manufacturing process, some breakthrough results have been achieved in terahertz waveguide filters. And the filters based on different types, structures and processes have been studied. In this review paper, the development status and common problems of terahertz waveguide filters are expounded based on the different processes. The advantages and disadvantages of filters developed by mainstream technologies are also summarized, which can provide a reference for the further development of terahertz waveguide filters with high performance.

Keywords terahertz waveguide filter

(THz) 0.1~10 THz [1]

[2–4] [5] [6] [7] [8] [9] [10][11]

/

2[12] [13]

2021-05-11 2021-07-17

(12003011) (20KJB510039)

* email:jqding@nuist.edu.cn

5

 

770

 

 

 

(Coplanar Waveguide CPW)[14] [15] [16]Q ( ) Q ( )[9] [7](Micro-Electromechanical Systems MEMS)

赫兹高性能滤波器的进一步发展提供基础。

1 CNC

(μm)MEMS [17–19]

(Deep Reactive Ion Etching DRIE) SU-8 (Thick SU-8 Photoresist)(UV–LIGA) MEMSBlock H–MEMS MEMS(Computer Numerical Control CNC)±10 μm [7] CNC ±2.5 μm 700 GHz[20] CNC CNC

upper block

 

 

 

 

 

 

bottom block

H-plane

 

 

E-plane

 

offset coupling

 

 

(a) waveguide filter structure based

(b) waveguide filter structure based on the (c) waveguide filter structure based on the offset

on the magnetic coupling

 

 

electrical coupling

 

 

coupling

Fig.1 Waveguide filter structures based on the magnetic coupling, the electrical coupling and the offset coupling

1

TE101

CNC W- (75~110 GHz) W-R3 (220~330 GHz) WR-2.8 (260~400 GHz) WR-1.5 (500~750 GHz) [20–26]1 [21,22,25] 1 H- E-

/( ) W-[27] - 2

771

 

19

 

 

 

220 GHz 2220 GHz [28] [29] 3 4 W 2 11

1 CNC

Table1 Performance summary of THz waveguide filters based on the CNC technology

working

center frequency/

3 dB

filter

RL/dB

IL/dB

response type

 

 

TZs

structure

Ref.

Tech.

band

GHz

FBW/%

order

 

No.

 

 

 

 

 

 

 

 

 

 

 

92.6

4.5.0

4

 

15

0.41

 

 

 

 

H-plane coupling

[21]

 

W-band

91.3

13.00

4

 

21

0.30

 

 

 

 

E-plane coupling

[22]

 

 

92.5

20.00

5

 

15

0.60

Chebyshev

 

offset-coupling

[23]

 

WR-5

179

8.70

8

 

18

0.34

 

H-plane coupling

[24]

 

WR-3

255

11.00

5

 

15

3.90

 

 

 

 

[25]

 

WR-2.8

340

5.30

4

 

20

0.60

 

 

 

 

H-plane E-plane

[26]

 

WR-1.5

690

 

20

2.10

 

 

 

 

[20]

 

W-band

92.6

5.50

4

 

15

1.20

 

 

4

cross-coupling

[27]

 

100

10.00

4

 

18

0.60

quasi-elliptic

1

extracted pole

[28]

CNC

 

 

WR-4

214

9.80

4

 

15

0.60

 

 

2

cross-coupling

[29]

 

 

 

 

W-band

100

6.00

4

 

13

0.50

Chebyshev

 

TM120-mode

[30]

 

2.70

6

 

15

1.50

dual band

4

TE201-mode

[31]

 

 

 

 

D-band

140

9.29

4

 

18.9

0.52

 

 

2

TE301-mode

[32]

 

140

17.00

2

 

12.5

0.33

 

 

2

mixed-mode

[33]

 

 

 

 

 

 

WR-3

258

8.80

4

 

15

0.70

quasi-elliptic

2

TE102-mode

[7]

 

256

9.80

 

20

0.50

2

over-mode

 

 

 

 

 

 

 

 

WR-2.2

390

12.00

3

 

15

1.50

 

 

1

mixed-mode

[34]

 

394

9.00

 

15

1.50

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cross-coupling

 

 

 

 

 

 

 

 

 

 

extracted pole

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) cross-coupling and source-

 

 

 

(b) additional pole waveguide

(c) cross coupled waveguide

 

 

 

load coupling filter structure

 

 

 

filter structure

 

filter structure

 

 

 

 

 

Fig.2 Waveguide filters with cross couplings or additional poles

 

 

 

 

 

 

2

 

 

 

 

 

TE102-mode

 

over-mode

 

 

 

dual band

 

 

 

(a)waveguide filter structure based on the TE102 mode resonator

TM120-mode

(b) waveguide filter based on multi-

(c) dual passband waveguide filter structure

mode resonators

based on the TE201 mode resonator

TE301-mode

mixed-mode

(d)waveguide filter structure based on the TM120 mode resonator

(e)waveguide filter structure based on the TE301 mode resonator

(f)waveguide filter structure based on mixed mode resonators

Fig.3 THz waveguide filter structures based on the higher order modes

3

TE102 TE103 TM120 Q

的高阶模谐振腔被广泛用于太赫兹滤波器的设计[7,30–34] [30] TM120

TE101[7,31] TE102 [31][7] TE101 singlet TE301 singlet

5

 

772

 

 

 

[32] [33] TE2N,1,0 (N=2,3,4,)2 CNC3 CNC

1 1[7,32]

CNC 400 GHzCNC

extracted poles

(a)additional pole waveguide filter structure based on SU-8 technology

offset coupling

filter cavity

H-plane bend

capacitive iris+H-plane bend

(b)H-plane coupled waveguide filter structure based on SU-8 technology

offset coupling

cross-coupling

(c) offset coupled waveguide filter

(d) offset coupled waveguide filter structure

structure based on SU-8 technology

based on SU-8 technology

WR-1.5

(e)offset coupled waveguide filter structure based on SU-8 technology

Fig.4 THz waveguide filters based on the SU-8 micro-technology

4 SU-8

2 SU-8

SU-8 SU-820:1 CNC40 nm SU-8 SU-8

 

 

2

SU-8

 

 

 

 

 

Table2 Performance summary of terahertz waveguide filters based on the SU-8 technology

 

 

 

 

 

 

 

 

 

 

 

 

 

working

center

3 dB

filter order

RL/dB

IL/dB

response

TZs

structure

Ref.

Tech.

band

frequency/GHz

FBW/%

type

No.

 

 

 

 

 

 

W-band

100.0

5.0

4

10

1.20

quasi-elliptic

2

extracted poles

[35]

 

88.0

9.7

4

15

1.00

 

 

 

[36]

 

 

 

 

 

 

 

293.2

8.8

4

16

3.30

Chebyshev

capacitive iris

[37]

 

 

300.0

9.0

5

10

2.20

 

[18]

SU-8

WR-3

 

 

 

309.0

3.3

3

15

0.40

 

 

offset coupling

[38]

 

 

 

 

 

 

298.6

5.3

3

16

0.45

quasi-elliptic

2

cross-coupling

[39]

 

WR-1.5

671.0

8.0

3

10

1.75

Chebyshev

offset coupling

[40]

 

 

 

 

 

 

 

 

 

 

 

 

SU-8 SHANG X BW- WR-1.5 [36–40] 4 2

H- W- [36] H- WR-3[37] SU-8 3 SU-8WR-3 WR-1.5 [38,40]SU-8 [35,39] SU-8

773

 

19

 

 

 

SU-8 WR-3

WR-1.5 3[41] H-

SU-8

3 DRIE

DRIE 90°MEMS CNCSU-8 DRIE(Silicon-On-Insulator SOI) DRIE220~330 GHz 0.02 dB/mm[42] DRIEDRIE

 

 

 

 

 

3

DRIE

 

 

 

 

 

 

 

 

 

Table3 Performance summary of terahertz waveguide filters based on the DRIE technology

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

working band

center frequency/GHz

 

3 dB FBW/(%)

filter order

RL/dB

IL/dB

response type

 

TZs

structure

Ref. Tech.

 

 

 

No.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D-band

140

10.40

 

5

10

 

0.61

 

 

 

H-plane coupling

[43]

 

 

 

 

G-band

174

5.50

 

15

 

2.00

 

 

 

[44]

 

 

 

 

 

 

 

 

 

E-plane coupling

 

 

 

 

J-band

240

6.30

 

2

10

 

2.00

Chebyshev

 

[45]

 

 

 

 

WR-2.2

385

3.90

 

2

10

 

2.70

 

H-plane coupling

[46]

 

 

 

 

 

570

8.77

 

3

10

 

0.90

 

 

 

[17]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WR-1.5

550

6.00

 

5

10

 

2.50

 

 

 

H-plane

[47]

 

 

 

 

 

640

6.25

 

5

13

 

1.00

 

 

 

E-plane

DRIE

 

 

 

 

 

 

 

 

 

 

 

WR-2.2

360

5.50

 

2

13

 

2.00

Chebyshev

 

circular cavity

[48]

 

 

 

 

 

 

 

 

 

400

7.50

 

2

20

 

2.84

quasi-elliptic

2

elliptic cavity

[49]

 

 

 

 

 

 

 

 

 

 

 

WR-1.0

1 017

2.16

 

4

10

 

1.90

quasi-elliptic

1

TE301/TE102 dual-mode

[50]

 

 

 

 

WR-3

270

1.85

 

4

15

 

1.21

quasi-elliptic

2

quasi-TM110

[51]

 

 

 

 

WR-2.2

450

1.00

 

2

15

 

2.60

Chebyshev

 

TE101 mode

[52]

 

 

 

 

 

2

15

 

2.32

 

TM110 dual-mode

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) H-plane coupled

(b) E-plane coupled waveguide

 

filter structures based on the

 

DRIE technology

(c)elliptical cavities waveguide filter structure based on DRIE

(d)layered waveguide filter structure based on DRIE

Fig.5 THz waveguide filters based on the DRIE technology

5 DRIE

DRIE[17,43–47] H- E- 5 3

DRIE WR-2.2 WR-1.5DRIE [48–50] HONG W

Q —TM110 WR-2.2Q OBERHAMMER J[42,51,52] H- WR-30.02 dB/mm SOI DRIE WR-3Q Q 700 1.85% 400 GHz Q Q 786 1%

5

 

774

 

 

 

DRIE 500 GHz DRIECNC

(a)THz waveguide filter based on the UV LIGA technology

(d)THz waveguide filter based on the SiC via holes technology

(b) THz waveguide filters based

(c) THz waveguide filter based on the

on the laser micromachining

GaAs based SIW technology

and 3D-printing technologies

 

(e)THz waveguide filter based on the photolithography and electroplating technology

Fig.6 THz waveguide filters based on other micro processes

6

[53–60]

(Wet-etching) (Electroforming) (UV–LIGA) 3D SiC

4 6W- [53–56] W-3D (Substrate Integrated Waveguide SIW) [57] [58] (SiC) [59]SIW Q ( 130) (3 dB ) SiC185 GHz SIW [60] 2 287 GHzCPW SIW

 

 

4

 

 

 

 

Table4 Performance summary of terahertz waveguide filters based on other special technologies

 

 

 

 

 

 

 

 

 

 

 

 

 

working

center

3 dB

filter

RL/dB

IL/dB

 

response

TZs

structure

technologies

Ref.

band

frequency/GHz

FBW/(%)

order

 

type

No.

 

 

 

 

 

 

 

94.0

1.3

2

15.0

1.75

 

 

 

H-plane

wet-etching

[53]

 

90.0

20.0

10

15.0

0.40

 

 

 

H-plane

electroforming

[54]

 

100.0

1.7

4

1.5

2.00

 

Chebyshev

E-plane

UV LIGA

[55]

W-band

100.0

4.0

4

15.0

0.80

 

laser

 

 

 

 

[56]

 

 

 

micromachining

 

87.5

11.5

5

18.0

0.50

 

 

 

 

 

 

 

 

3D-printing

 

 

80.0

2.5

4

10.0

3.89

 

 

 

 

 

 

 

1

 

PCB-based

[57]

 

93.0

3.4

4

13.5

4.30

quasi-elliptic

2

SIW

GaAs-based

[58]

WR-5

185.0

9.7

4

10.0

1.55

 

 

2

 

SiC via-holes

[59]

WR-3

287.0

3.5

2

18.0

4.60

 

Chebyshev

CPW

photolithography

[60]

 

and electroplating

 

 

 

 

 

 

 

 

 

 

 

3W- SIW

775

 

19

 

 

 

5

CNC 400 GHz SU-8WR-3 WR-1.5 DRIE500 GHz

集成、可扩展性等多方向发展。

[ 1 ] SIEGEL P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002,50(3):910928. doi:10.1109/22.989974.

[ 2 ] SHI Shengcai,PAINE S,YAO Qijun,et al. Terahertz and far-infrared windows opened at Dome A in antarctica[J]. Nature Astronomy, 2016,1(1):17. doi:10.1038/s415500160001.

[ 3 ] , . [J]. , 2018,16(6):931937. (ZHAO Mingming,YU Jianjun. Research status and application prospect of terahertz communication system[J]. Journal of Terahertz Science and Electronic Information Technology, 2018,16(6):931937.) doi:10.11805/TKYDA201806.0931.

[ 4 ] , , , . [J]. , 2017,15(2):172177. (GUO Aiyan,GAO Wenjun,XU Mingming,et al. Debris warning technology of space borne terahertz radar[J]. Journal of Terahertz Science and Electronic Information Technology, 2017,15(2):172177.) doi:10.11805/TKYDA201702.0172.

[ 5 ] ZHAO Yun. Quasi-corrugated substrate integrated waveguide H-plane horn antenna with wideband and low-profile characteristics[J]. International Journal of RF and Microwave Computer-aided Engineering, 2019,29(2):e21539.1e21539.6. doi:10.1002/mmce. 21539.

[ 6 ] STÄRKE P,CARTA C,ELLINGER F. Direct chip-to-waveguide transition realized with wire bonding for 140220 GHz G- band[J]. IEEE Transactions on Terahertz Science and Technology, 2020,10(3):302308. doi:10.1109/TTHZ. 2020. 2971690.

[ 7 ] DING Jiangqiao,SHI Shengcai,ZHOU Kang,et al. WR-3 band quasi-elliptical waveguide filters using higher order mode resonances[J]. IEEE Transactions on Terahertz Science and Technology, 2017,7(3):302309. doi:10.1109/TTHZ.2017.2686007.

[ 8 ] DING Jiangqiao,ZHAO Yun,GE Junxiang,et al. A 90° waveguide hybrid with low amplitude imbalance in full W-band[J]. Journal of Infrared,Millimeter,and Terahertz Waves, 2019,40(4):429434. doi:10.1007/s10762019005771.

[ 9 ] TREUTTEL J,GATILOVA L,MAESTRINI A,et al. A 520620 GHz Schottky receiver front-end for planetary science and remote sensing with 1 0701 500 K DSB noise temperature at room temperature[J]. IEEE Transactions on Terahertz Science and Technology, 2015,6(1):148155. doi:10.1109/TTHZ.2015.2496421.

[10]DING Jiangqiao,MAESTRINI A,GATILOVA L,et al. A 300 GHz power-combined frequency doubler based on E- plane 90°-hybrid and Y-junction[J]. Microwave and Optical Technology Letters, 2020,62(8):2683-2691. doi:10.1002/mop.32146.

[11]CAI Jun,WU Xianping,FENG Jinjun. Traveling-wave tube harmonic amplifier in terahertz and experimental demonstration[J]. IEEE Transactions on Electron Devices, 2014,62(2):648651. doi:10.1109/TED.2014.2377914.

[12]LI Jiusheng. Terahertz wave narrow bandpass filter based on photonic crystal[J]. Optics Communications, 2010,283(13): 26472650. doi:10.1016/j.optcom.2010.02.046.

[13]CHIANG Yiju,YANG Chanshan,YANG Yuhang,et al. An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial[J]. Applied Physics Letters, 2011,99(19):191909. doi:10.1063/1.3660273.

[14]SHIROKOFF E,BARRY P S,BRADFORD C M,et al. MKID development for SuperSpec:an on-chip,mm-wave,filter-bank spectrometer[C]// Millimeter,Submillimeter,and Far-Infrared Detectors and Instrumentation for Astronomy VI. Proceedings of

5

 

776

 

 

 

SPIEThe International Society for Optical Engineering. Amsterdam,Netherlands:[s.n.], 2012:111. doi:10.1117/12.927070.

[15]EBLABLA A M,LI Xu,WALLIS D J,et al. GaN on low-resistivity silicon THz highQ passive device technology[J]. IEEE Transactions on Terahertz Science and Technology, 2016,7(1):93-97. doi:10.1109/TTHZ.2016.2618751.

[16]DING Jiangqiao,HU Jie,SHI Shengcai. 350 GHz bandpass filters using superconducting coplanar waveguide[J]. IEEE Transactions on Terahertz Science and Technology, 2021,11(5):1. doi:10.1109/TTHZ.2021.3071019.

[17]LEONG K M K H,HENNIG K,ZHANG Chunbo,et al. WR-1.5 silicon micromachined waveguide components and active circuit integration methodology[J]. IEEE Transactions on Microwave Theory and Techniques, 2012,60(4):9981005. doi:10.1109/ TMTT.2012.2184296.

[18]SHANG Xiaobang,KE Maolong,WANG Yi,et al. WR-3 band waveguides and filters fabricated using SU-8 photoresist micromachining technology[J]. IEEE Transactions on Terahertz Science and Technology, 2012,2(6):629637. doi: 10.1109/TTHZ.2012.2220136.

[19]STANEC J R,BARKER N S. Fabrication and integration of micromachined submillimeter-wave circuits[J]. IEEE Microwave and Wireless Components Letters, 2011,21(8):409411. doi:10.1109/LMWC.2011.2158411.

[20]KOLLER D,BRYERTON E W,HESLER J L. WM380(675700 GHz) bandpass filters in milled,split-block construction[J]. IEEE Transactions on Terahertz Science and Technology, 2018,8(6):630637. doi:10.1109/TTHZ.2018.2873114.

[21], , , . W E [J]. , 2021,37(3):6064. (XU Guangyang, ZHAO Yun,CHEN Yao,et al. W-band broadband waveguide filter with single E-plane coupling[J]. Acta Microwave, 2021,37(3):6064.) doi:10.14183/j.cnki.10056122.202103013.

[22]XU Jing,DING Jiangqiao,ZHAO Yun,et al. W-band broadband waveguide filter based on H-plane offset coupling[J]. Journal of Infrared,Millimeter,and Terahertz Waves, 2019,40(4):412418. doi:10.1007/s10762019005717.

[23]LIAO Xiaoyi,WAN Lei,YIN Yong,et al. W-band low-loss bandpass filter using rectangular resonant cavities[J]. IET Microwaves, Antennas & Propagation, 2014,8(15):14401444. doi:10.1049/iet-map.2014.0252.

[24], , , . 180 GHz [J]. , 2021,19(2):181

184.(XIONG Yang,PEI Naichang,HE Yilong,et al. A 180 GHz cavity filter with low insertion loss[J]. Journal of Terahertz Science and Electronic Information Technology, 2021,19(2):181184.) doi:10.11805/TKYDA2020085.

[25]ZHUANG Jianxing,HONG Wei,HAO Zhangcheng. Design and analysis of a terahertz bandpass filter[C]// 2015 IEEE International Wireless Symposium(IWS 2015). Shenzhen,China:IEEE, 2015:14. doi:10.1109/IEEEIWS.2015.7164597.

[26]ZHANG Naibo,SONG Ruiliang,HU Mingjun,et al. A low-loss design of bandpass filter at the terahertz band[J]. IEEE Microwave and Wireless Components Letters, 2018,28(7):573575. doi:10.1109/LMWC.2018.2835650.

[27]DING Jiangqiao,LIU Dong,SHI Shengcai,et al. W-band quasi-elliptical waveguide filter with cross-coupling and source-load coupling[J]. Electronics Letters, 2016,52(23):19601961. doi:10.1049/el.2016.3245.

[28]DING Jiangqiao,SHI Shengcai,ZHOU Kang,et al. Analysis of 220 GHz low-loss quasi-elliptic waveguide bandpass filter[J]. IEEE Microwave and Wireless Components Letters, 2017,27(7):648650. doi:10.1109/LMWC.2017.2711544.

[29]LEAL-SEVILLANO C A,MONTEJO-GARAI J R,RUIZ-CRUZ J A,et al. Low-loss elliptical response filter at 100 GHz[J]. IEEE Microwave and Wireless Components Letters, 2012,22(9):459461. doi:10.1109/LMWC.2012.2212237.

[30]SHANG Xiaobang,LANCASTER M,DONG Yuliang. W-band waveguide filter based on large TM120 resonators to ease CNC milling[J]. Electronics Letters, 2017,53(7):488490. doi:10.1049/el.2016.4131.

[31]ZHOU Kang,DING Jiangqiao,ZHOU Chunxia,et al. W-band dual-band quasi-elliptical waveguide filter with flexibly allocated frequency and bandwidth ratios[J]. IEEE Microwave and Wireless Components Letters, 2018,28(3):206208. doi: 10.1109/LMWC.2018.2796840.

[32]XIAO Yu,SHAN Peizhe,ZHU Kaiqiang,et al. Analysis of a novel singlet and its application in THz bandpass filter design[J]. IEEE Transactions on Terahertz Science and Technology, 2018,8(3):312320. doi:10.1109/TTHZ.2018.2823541.

[33]WU Yiwen,HAO Zhangcheng,LU Rong,et al. A high-selectivity D-band mixed-mode filter based on the coupled overmode cavities[J]. IEEE Transactions on Microwave Theory and Techniques, 2020,68(6):23312342. doi:10.1109/TMTT.2020.2977903.

[34]WANG Jie,ZHAO Yun,DING Jiangqiao. 400 GHz easy-packaging waveguide filters based on mixed-mode and off-axis couplings[J]. IEEE Access, 2021(9):7664276648. doi:10.1109/ACCESS.2021.3082569.

[35]LEAL-SEVILLANO C A,MONTEJO-GARAI J R, KE Maolong,et al. A pseudo-elliptical response filter at W-band fabricated with thick SU-8 photo-resist technology[J]. IEEE Microwave and Wireless Components Letters, 2012,22(3):105107. doi: 10.1109/LMWC.2012.2183861.

[36]SHANG Xiaobang,KE Maolong,WANG Yi,et al. Micromachined W-band waveguide and filter with two embedded H-plane

777

 

19

 

 

 

bends[J]. IET Microwaves,Antennas & Propagation, 2011,5(3):334339. doi:10.1049/ietmap.2010.0272.

[37]SHANG Xiaobang,KE Maolong,WANG Yi,et al. Micromachined WR-3 waveguide filter with embedded bends[J]. Electronics Letters, 2011,47(9):545547. doi:10.1049/el.2011.0525.

[38]CHEN Qi,SHANG Xiaobang,TIAN Yingtao,et al. SU-8 micromachined WR-3 band waveguide bandpass filter with low insertion loss[J]. Electronics Letters, 2013,49(7):480482. doi:10.1049/el.2013.0277.

[39]YANG Hao,DHAYALAN Y,SHANG Xiaobang,et al. WR-3 waveguide bandpass filters fabricated using high precision CNC machining and SU-8 photoresist technology[J]. IEEE Transactions on Terahertz Science and Technology, 2017,8(1):100107. doi:10.1109/TTHZ.2017.2775441.

[40]SHANG Xiaobang,TIAN Yingtao,LANCASTER M J,et al. A SU8 micromachined WR-1.5 band waveguide filter[J]. IEEE Microwave and Wireless Components Letters, 2013,23(6):300302. doi:10.1109/LMWC.2013.2260733.

[41]GUO Cheng,DHAYALAN Y,SHANG Xiaobang,et al. A 135150 GHz frequency tripler using SU-8 micromachined WR-5 waveguides[J]. IEEE Transactions on Microwave Theory and Techniques, 2019,68(3):10351044. doi:10.1109/TMTT. 2019.2955684.

[42]BEUERLE B,CAMPION J,SHAH U,et al. A very low loss 220325 GHz silicon micromachined waveguide technology[J]. IEEE Transactions on Terahertz Science and Technology, 2018,8(2):248250. doi:10.1109/TTHZ.2018.2791841.

[43]ZHAO Xinghai,BAO Jinfu,SHAN Guangcun,et al. D-band micromachined silicon rectangular waveguide filter[J]. IEEE Microwave and Wireless Components Letters, 2012,22(5):230232. doi:10.1109/LMWC.2012.2193121.

[44]ZHAO Xinghai,SHAN Guangcun,DU Yijia,et al. G-band rectangular waveguide filter fabricated using deep reactive ion etching and bonding processes[J]. Micro & Nano Letters, 2012,7(12):12371240. doi:10.1049/mnl.2012.0567.

[45]VAHIDPOUR M,SARABANDI K. Micromachined J-band rectangular waveguide filter[C]// 2011 XXXth URSI General Assembly and Scientific Symposium. Istanbul,Turkey:IEEE, 2011:14. doi:10.1109/URSIGASS.2011.6050631.

[46]HU Jiang,XIE Shanyi,ZHANG Yong. Micromachined terahertz rectangular waveguide bandpass filter on silicon-substrate[J]. IEEE Microwave and Wireless Components Letters, 2012,22(12):636638. doi:10.1109/LMWC.2012.2228179.

[47]LEAL-SEVILLANO C A,RECK T J,JUNG-KUBIAK C,et al. Silicon micromachined canonical E-plane and H-plane bandpass filters at the terahertz band[J]. IEEE Microwave and Wireless Components Letters, 2013,23(6):288290. doi: 10.1109/LMWC.2013.2258097.

[48]TANG Hongjun,HONG Wei,YANG Guangqi,et al. Silicon based THz antenna and filter with MEMS process[C]// International Workshop on Antenna Technology(IWAT). Hong Kong,China:IEEE, 2011:148151. doi:10.1109/IWAT.2011.5752383.

[49]ZHUANG Jianxing,HAO Zhangcheng,HONG Wei. Silicon micromachined terahertz bandpass filter with elliptic cavities[J]. IEEE Transactions on Terahertz Science and Technology, 2015,5(6):10401047. doi:10.1109/TTHZ.2015.2480844.

[50]LIU Shuang,HU Jiang,ZHANG Yong,et al. 1 THz micromachined waveguide band-pass filter[J]. Journal of Infrared, Millimeter,and Terahertz Waves, 2016,37(5):435447. doi:10.1007/s1076201502296.

[51]GLUBOKOV O,ZHAO Xinghai,CAMPION J,et al. Investigation of fabrication accuracy and repeatability of high-Q silicon- micromachined narrowband sub-THz waveguide filters[J]. IEEE Transactions on Microwave Theory and Techniques,

2019,67(9):36963706. doi:10.1109/TMTT.2019.2926244.

[52] GLUBOKOV O,ZHAO Xinghai,CAMPION J,et al. Micromachined filters at 450 GHz with 1% fractional bandwidth and unloaded Q beyond 700[J]. IEEE Transactions on Terahertz Science and Technology, 2018,9(1):106108. doi: 10.1109/TTHZ.2018.2883075.

[53]SONG S,SEO K S. A W-band aircavity filter integrated on a thin-film substrate[J]. IEEE Microwave and Wireless Components Letters, 2009,19(4):200202. doi:10.1109/LMWC.2009.2015492.

[54]LEAL-SEVILLANO C A,PISANO G,MONTEJO-GARAI J R,et al. Development of low loss waveguide filters for radioastronomy applications[J]. Infrared Physics & Technology, 2013(61):224229. doi:10.1016/j.infrared.2013.08.012.

[55]STANEC J R,BARKER N S. Fabrication and integration of micromachined submillimeterwave circuits[J]. IEEE Microwave and Wireless Components Letters, 2011,21(8):409411. doi:10.1109/LMWC.2011.2158411.

[56]SHANG Xiaobang,PENCHEV P,GUO Cheng,et al. W-band waveguide filters fabricated by laser micromachining and 3-D printing[J]. IEEE Transactions on Microwave Theory and Techniques, 2016,64(8):25722580. doi:10.1109/TMTT. 2016.2574839.

( 799 )