Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
0
Добавлен:
01.04.2024
Размер:
409.36 Кб
Скачать

J Infrared Milli Terahz Waves (2009) 30:11611169

DOI 10.1007/s10762-009-9541-3

The Analysis of the Parameters and the Functions of Rectangular Waveguide E-plane Filter

Yuyuan Yang & Xinghui Yin

Received: 16 March 2009 / Accepted: 21 June 2009 / Published online: 8 July 2009

# Springer Science + Business Media, LLC 2009

Abstract In this paper, to analyze the discontinuity structure of E-plane metal insert by mode matching method, and metal insert thickness and resonator length impact on filter design.

Keywords Mode matching method . E-plane . Filter . Metal insert thickness

1 Introduction

E-plane waveguide filter was found out by Konishi in 1974[1]. This type of filters combine the advantages of simple structure, low passband insertion losses, easily produced, so that it is widely applied in ku-band and ka-band. To this structure, the analysis methods mainly are Variation method and Mode matching method. Taking account into the high-order mode nearby the discontinuity and the metal thickness impact on scattering parameters, mode matching method analyzes waveguide discontinuity structure more precisely. So it is a high-precision numerical method. In this paper, mode matching method is applied to analyze the metal thickness impact on the performance of the filter. To sum up the filter design method relying the diversification of metal thickness by experiments and simulations. Combined with simulation results, the impact caused by the resonator length and metal thickness is analyzed.

2 Basic theory

The basic unit structure of rectangular waveguide E-plane filter as shown in Fig. 1.

This work was supported by the Natural Science Foundation of Jiangsu Province of China under Grant No. BK2008357.

Y. Yang (*) : X. Yin

Hohai University, Nanjing, China e-mail: yangyuyuan1@yahoo.cn

1162

J Infrared Milli Terahz Waves (2009) 30:11611169

 

 

Fig. 1 The basic unit structure of E-plane filter.

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIII

 

a

FI

II

Fi II

F III

 

 

 

2 B II

B iII

 

 

 

III

 

 

 

 

 

t

 

a

 

 

 

 

 

 

 

 

a1

FI

I

F I

 

 

 

B

III

 

 

i

 

 

 

 

BI

BiI

BiIII

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

z

For each subregion v=I, II, III (Fig. 1), the electrical fields are:

 

 

M

 

GmIII sin a

x FmIII e jkzm z þ BmIII ejkzm z

ð1

EyIII ¼ 1

 

X

 

 

 

mp

III

 

III

 

N

GnII sin a a2

ðx a2Þ FnII e jkznz þ BnII ejkznz

ð1

EyII ¼ 1

X

 

 

 

 

np

 

 

II

II

 

EyI

¼ i

I

1

GiI sin a1

x FiI e jkziz

þ BiI ejkziz

 

ð1

 

 

¼

 

 

 

 

ip

I

I

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

The corresponding equations of Hx are obtained by multiplying equations (1a) to (1c)

by YmIII, YnII and YiI .

Where

 

 

Kzm

 

8 q2

2

 

 

2

 

9

 

 

2a

 

 

 

III

¼

<

 

w2m0"0 ðmp=aÞ2

w2m0"0 ðmp=aÞ2 0

=

 

 

ð Þ

 

 

 

 

 

 

j ðmp=aÞ w2m0"0

w m0"0 ðmp=aÞ h0

 

 

 

 

 

 

 

 

 

:

 

 

 

 

 

 

 

 

 

 

 

;

 

 

 

Kzn

 

8 q2

 

 

2

 

ð ð

 

 

ÞÞ2

 

 

 

9

2b

II

¼

<

 

w2m0"0 ðnp=ða a2ÞÞ2

"0

 

w2m0"0

np=

a a2 2

 

 

0

=

ð Þ

 

 

j

ðnp=ða a2ÞÞ w2m0

 

w m0"0 ðnp=ða a2ÞÞ h0

 

 

 

:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

;

 

 

 

 

Kzi

 

8 q2

2

 

 

2

 

9

 

 

2c

 

 

 

I

¼

<

 

w2m0"0 ðip=a1Þ2

w2m0

"0 ðip=a1Þ2 0

=

 

 

ð Þ

 

 

 

 

 

j ðip=a1Þ w2m0"0

w m0

"0 ip=a1 h0

 

 

With

 

 

 

 

 

: q

 

 

 

 

 

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III

 

KIII

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

zm

 

 

 

 

 

 

 

 

ð3

 

 

 

 

 

 

 

 

Ym

¼

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

wm0

 

 

 

 

 

 

 

 

J Infrared Milli Terahz Waves (2009) 30:11611169

1163

 

 

 

 

 

II

 

 

KII

 

 

 

zn

 

Yn

¼

 

 

 

ð3

wm0

I

 

 

KI

 

 

 

zi

ð3

Yi

¼

 

 

wm0

Normalization (G) can be obtained:

 

 

 

r

III

 

 

 

wm0

Gm

¼ 2

 

abKzmIII

 

 

 

 

wm

 

rð Þ

GnII ¼ 2

0

a a2 bKII

 

 

 

 

zn

I

 

 

 

wm0

Gi

¼ 2

r

 

a1bKziI

The continuity conditions of electric and magnetic field at z=0:

ð4

ð4

ð4

III

 

8

EyII

a2hxha

 

 

 

Ey

¼

0 I

a1hxha2

ð

5a

Þ

 

 

< Ey

0 x a1

 

 

 

 

:

 

h h

 

 

 

 

 

x

¼

Hx

0hxha1

ð Þ

H

III

 

HxII

a2 x

a

5b

 

 

 

 

I

h h

 

 

For each subregion (V=I, II, II), FmV ; BVm can be obtained by complex mathematical calculations. Available to the following three matrix equations:

 

 

 

 

 

FIII þ BIII

¼ LEI FI

þ BI þ LEII FII þ BII

 

 

 

 

 

ð6

 

 

 

 

 

 

 

 

 

LHI FIII

BIII ¼ FI

BI

 

 

 

 

 

 

ð6

 

 

 

 

 

 

 

 

LHII

 

FIII BIII

¼ FII

BII

 

 

 

 

 

 

ð6

Where coupling integral matrix elements are:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s

a1

 

 

mp

 

 

 

 

np

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

KIII

 

Z

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

zm

 

 

 

 

 

 

 

x

sin

 

 

 

 

 

 

 

 

 

 

 

 

LE

mn ¼ 2

 

aa1KI

 

 

sin

 

 

a

a1

x dx ¼

 

LH

nm

 

 

ð7

 

 

 

 

 

 

 

 

 

 

zi 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s

q

 

 

mp

 

 

 

 

 

 

np

 

 

 

 

 

 

 

 

II

 

 

 

KIII

 

Z

 

 

 

 

 

 

 

 

 

 

II

 

 

 

 

ð Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

zm

 

 

 

 

 

 

 

x

sin

 

 

 

 

 

 

 

 

 

 

 

 

 

LE mn

¼ 2

 

a a a2

KII

 

sin

a

 

a

 

a2

ðx a2Þ

dx ¼

LH

nm

ð7

 

 

 

 

 

 

 

 

zn a2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1164 J Infrared Milli Terahz Waves (2009) 30:11611169

Rearrange

S

¼

2

LEI

LEII

II

3

1

2

LEI

LEII

II

3

ð Þ

I

0

II

 

I

0

II

 

4

LH

5

 

4

LH

5

8

 

 

0

I

LH

 

0

I

LH

 

Assumed that the metal length is w, the features of discontinuity plane at z=w and at z= 0 are identical, but in the opposite direction, so S z¼w ¼ ðSj0ÞT .

According to the microwave network theory, the length of waveguide is w, considering N modes, then the scattering matrix elements as follows:

S11w ¼ S22W ¼ 0 ; S12W ¼ S21W ¼ D

Where

n o

D ¼ diag e jKznV w

Using network cascade method, the two-port scattering matrix of discontinuity district formed by E-plane metal insert can be calculated[2]:

ðSÞ11 ¼ ðSÞ22 ¼ nI þ U W ðI þ UÞ 1W o 1 nI U W ðI þ UÞ 1W o

ð9

ðSÞ12 ¼ ðSÞ21 ¼ nI þ U W ðI þ UÞ 1W o 1 W nU ðI þ UÞ 1ðI UÞo

ð9

Where

 

II

I ¼ X LVE nU þ 2DV U DV DV 1DV oLVH

V ¼I

II

W ¼ X 2LVE DV U DV DV 1LVH

V ¼I

With U is unit matrix

Then T-equivalent circuit parameters can be calculated:

jxs ¼ 1 s12 þ s11

1 s11 þ s12

2s12

jxp ¼ ð1 s11Þ2 s212

ð10

ð10

According to equations (10a) and (10b), K-impedance converter can be calculated:

Φ ¼ tan 1 2xp þ xs tan 1xs

ð11

K ¼ tan Φ=2 þ tan 1xs

ð11