Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
0
Добавлен:
01.04.2024
Размер:
355.18 Кб
Скачать

E-plane resonators for compact inline waveguide filters

UJankovic*, N Mohottige, D Budimir*

*University of Westminster, London, UK, d.budimir@westminster.ac.uk, Cobham Wireless, Chesham, UK

Keywords: waveguide filters, Q factor.

Abstract

Waveguide resonators incorporating E-plane metal inserts with fins have already been demonstrated in building extracted pole sections (EPSs) for very compact and easily fabricated microwave filters. Flexibility of transmission poles (TPs) and zeros (TZs) locations for different resonant and non-resonant modes is further shown and the electromagnetic nature of these modes as well as natural frequencies of EPS sections are explained and numerically estimated. Detailed comparison with conventional waveguide resonators, overmoded cavities, state of the art waveguide resonator solutions and substrate intergerated waveguide resonators is performed at 10 GHz.

1 Introduction

Even though waveguide technology had its initial most significant development in the first half of the 20th century, it is still unparalleled when it comes to applications requiring low loss, high power and perfect EM isolation. Moreover, during time, demands for compactness, complex filter networks with very low insertion loss and high roll-off have been pushed ever closer to the obtainable physical limits. Also, new system requirements such as millimetre wave links for 5G mobile networks as well as new fabrication technologies and implementations like substrate integrated waveguide (SIW) one are always bringing freshness to the area.

In [1] Konishi and Uenakada proposed use of metal E-plane inserts for realisation of directly coupled waveguide filters [2]. E-plane waveguide technology is likewise very suitable for implementation of ridged waveguide resonators [3] and quasi-lowpass corrugated-waveguide filters [4]. In [5], the size of the conventional E-plane resonator was reduced and transmission zero introduced through the addition of metal S- shaped lines on dielectric slab. Finally, in [6] extracted pole sections using fins have been introduced. Further miniaturization was achieved by use of several fins [7], and multiplexers based on this filter structure have been designed [8]. In this paper, compact E-plain resonators with fins are explored in more details regarding their fundamental characteristics, resonant frequencies and quality factors, as well as for their power handling capability as one of the chief characteristics of resilience of these microwave components in real life applications.

2 Resonator structure

3D model of an E-plane inline resonator with fin coupled on both sides to form an EPS section is shown in Fig 1a, whereas its equivalent scheme is depicted in Fig 1b. That is, the central fin can be represented by a parallel connected serious LC circuit, the waveguide straight sections around it by equivalent transmission line sections having the same characteristic impedance as the waveguide wave impedance, and the enclosing septa as immitance invertors.

Ă>ĨŝŶ

tĨŝŶ

ď

Ă

Ő

D^͕ϭ

>

 

Z>

ZƐ

 

Dϭ͕>

 

͕ Đ

 

͕ Đ

 

 

 

 

ď

Figure 1: a) 3D model of proposed E-plane inline resonator and b) its equivalent circuit

The dominant mode is based on TE101 mode, which can be observed by half sine field oscillations in x and z directions. In horizontal plane, electric field diminishes on all the side walls, while in the central part, where it is the strongest, it surround the fin and is much tighter localized than it is for the resonator without a fin. Adding the fin, which effectively meanders the EM field inside the cavity, can be represented as a continuous transformation of the top waveguide wall.

3 Resonances

First of all, the fin length will be extracted from the TZ position. Transmission zeros are inherent property of a transmission function of a network between two of its ports. They tell at which (complex) frequencies the ports are decoupled. For that reason, it does not matter how are these

1

two ports closed – if we inspect the transfer function relation for that pair of ports through different parameters (Z,Y,S) it will have exactly the same transfer function numerator zeros if we do not take into the account possible cancellation effect. In other words, there is a cut in the signal path. This directly implies that we can extract EPS section zeros by removing invertors, that is, just keeping the fin inside a waveguide. In practice, this can be affected by mutual coupling of the fin with other elements, in this case septa and other fins, which becomes more significant as the structure’s size reduces.

For ideally thin fin, its length can be approximately calculated by the expression:

Lfin=0.287ÂȜ – 0.065Âa

(1)

So, the fin length is very slightly larger than the quarter wavelength. Here, Ȝ=c/f is a free space wavelength rather than the guided one. This can be explained by the fact that the fin lays in a cross section plane and not along the waveguide. And by image theory applied on waveguide walls, the fin transforms into 2D array of half-wavelength dipoles in open space. Hence in theory, at the cut-of frequency, the fin length is roughly equal to the waveguide height.

Metal insert is supposed to be thin (< 2% a), but thicker than the skin depth so that perturbation method can be applied. Then, it can be taken that insert thickness does not influence the transmission zero frequency.

Including the fin width Wfin, TZ frequency can be roughly calculated by

f z

=

0.287 c

 

+ f

c

Wfin

,

(2)

Lfin + 0.065

a

a

 

 

 

 

 

 

 

 

 

 

where fc is the waveguide cut-off frequency. Estimating Wfin, which enlarging reduces the coupling and narrows the bandwidth, Lfin can easily be found from the TZ frequency fz calculated in the ideal model to satisfy the specification.

In frequency band where higher order modes start to appear, first there is a visible shift in fin length, and at about 3Ȝ/4, secondary radiation from the fin is mostly transferred to higher modes with first index odd (odd number of half-sine oscillations along the wider cross section rectangle edge due to the location of the fin in the centre which fixes field

maximum in that position), i.e. TE11, TM11, TE30,… in the order they appear. Accordingly, TZ effect in the dominant

mode diminishes. Since for historical reasons the wider rectangle side is a bit more than double length of the shorter one, these spurious modes are further shifted to higher frequencies, i.e. more than twice the cut-off frequency of the dominant mode. E.g. for X-band WR-90 , cut-off frequencies of TE11 and TM11 modes are 16.16 GHz.

Pole resonant frequency in an unloaded resonator can be calculated starting with the ubiquitous expression for the TE101 mode in the rectangular waveguide cavity, modifying it through division with a nonlinear function larger or equal

than one, which depends on Lfin and has relatively modest steepness for small values of Lfin, but it increases afterwards. Nevertheless, of interest are only those larger values of Lfin for which this function can be linearized. Except for Wfin that can vary in a large band, small changes with all parameters fixed apart from one make roughly linear changes, meaning that partial derivatives of frequency are nearly constant in the ranges of interest.

Therefore, using least square method to approximate overdeterminate system of linear equations, for thin fin the transmission pole frequency in X band can be estimated by:

fp [GHz] =

(3)

26.5 - 0.68ÂL[mm] - (2.13-0.073ÂL[mm])ÂLfin[mm]

Since Lfin is already known from satisfying TZ location, it is not difficult to calculate L from the known TP frequency.

Transmission poles from the transmission network are isolated by eigenmode solver, as they are the natural frequencies when the network ports are short circuited. There may be a confusion arising by the asymmetric properties of TPs and TZs. If we take as an example a reflexion parameter, there is indeed symmetry between the denominator and the numerator, since two different reflection parameters are just inverse one to another. But this is just an exception which does not violate the more universal property of not having symmetry between the denominator and the numerator. It is important to stress that the mathematical function through which we can observe the natural frequencies (complex in general case) is a transfer function, which in strictly a response function over a source function in the Laplace domain. This signifies that although in both denominator and numerator of a transfer function we have polynomials, there is no symmetry in the general case between them – the fundamental characteristic of a circuit lays in the zeros of the denominator, not the numerator.

3.1 Higher order modes

In [6] are as well used higher order modes, put together to form dual-mode resonator. Actually, these are not degenerate modes, but modes of very different nature, though are of similar resonant frequencies. First one is modification of TE101 mode, just as the dominant mode (for both modes it can be checked that varying a and d alters the resonant frequency, whereas changing b has only minuscular indirect effect over the fin), however, with a different mode in the volume around the fin. This can be view by comparison of the field distributions at the foot of the fin for these two modes, fig. 2. While one has electric field lines going into the corner like rays of cylindrical waves (a) to satisfy no tangent electric field component boundary condition, the other has electric field lines forming arcs centred on the fin slightly below the waveguide top wall (b). The second mode in the transmission pole pair is almost unaltered TE102 mode due to the fact that the fin is positioned where the field has its minimum. This also means that changing fin length, while having large effect

2

on the neighbouring transmission pole and transmission zero,

As the rectangular waveguide is used the standard X-band

has negligible effect on the transmission pole resulting from

WR-90 having cross section dimensions

 

 

 

 

 

 

 

 

 

 

mm and

this cavity resonance. These properties allow various different

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mm to accommodate the

dominant TE

 

 

responses such as transmission pole-zero-pole sequence.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ʹʹǤͺ101 mode

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

resonant cavity, being guided by its inline applications such

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ǥ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

as in directly coupled waveguide

 

filters

[1],

 

[2].

 

From

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is

calculated

the

 

 

rectangular

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

waveguide cavity

length

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mm.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ͻǤͺ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Use of degenerate TM120 and TM210 modes was proposed in

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[11] for the sake of having design flexibilities in terms of the

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

number and position of transmission zeros, response

Figure 2: Electric field lines in the central waveguide E-plane

bandwidth as well as of the cavity length. The latter is

because

of

having

 

the

last

mode

 

 

index

referring

to the

cross section at the fin bottom for a) dominant and b) second

longitudinal direction zero. The rectangular waveguide cavity

TE101 modes.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

accommodating TM120 and TM210 modes is set to have

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

Q factor

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dimensions exactly like in [11] where resonant frequency is

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

already 10 GHz (since the resonant frequency is independent

Comparison of (unloaded) Q factors for different cavity

of

 

 

 

d,

for

 

equal

 

sides a

and

 

 

b,

 

 

 

 

 

ξ

 

),

hence

resonators at f = 10 GHz is given in Table 1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When calculated

Here,

 

universally,

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is scaled by the factor

 

 

 

 

 

 

, which corresponds

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

͵͵Ǥ ʹ

 

 

 

 

 

Ǥ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vacuum

 

permittivity

and

vacuum

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

are

 

 

 

ɂ

 

 

ͺǤͺ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the resulting

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to using silver plating instead of pure aluminium,

Ɋ Ɏ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

͵ Ǥ ͵ π

Qu

 

is 5505.1, which is close to the value 5550 given in the

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

permeability constants respectively,

 

 

paper.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is

 

impedance of

 

 

free

 

space,

 

 

 

 

 

 

 

 

 

is

angular

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As the circular waveguide is used X-band C104 waveguide

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

wavenumber and

 

 

 

 

 

 

 

 

 

 

 

 

is surface resistance.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ɘ ɂ Ɋ

 

 

 

 

 

having inner radius of

 

 

 

 

 

 

 

 

 

 

 

mm to accommodate the

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dominant TE111 mode resonant cavity, being guided by its

Regarding material properties, it is assumed that metal

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ǥ ʹʹ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

waveguide

x

housings

 

 

 

are

 

 

made

 

of

 

 

 

aluminium,

inline

 

applications. From

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

m , and metallic inserts of

 

 

 

 

 

 

 

 

 

 

 

 

, is

calculated

the

circular

 

waveguide

cavity

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

length,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mm..

 

In

 

 

addition,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

annealed

 

copper,

 

 

͵͵Ǥx

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ǥͺ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

In

 

SIW

design,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ɐ

 

͵Ǥ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

͵ Ǥ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

low loss Rogers RT/duroid 5880 high

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

hsub = 1.575 mm thick

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ɐ

Ǥͺ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

frequency

 

laminate

 

is

 

 

used

 

having relative

 

permittivity

 

TE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ⱦ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dielectric

 

characteristics.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copper

cladding

 

 

has

 

 

 

 

 

 

 

 

 

 

 

 

 

 

thickness with

In

 

contrast,

the

overmoded

cavity

 

 

accommodating

TE011

ɂ ʹǤʹ

 

 

 

 

 

Ɂ Ǥ ͻ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mode is scaled to have proportions like the average cavity in

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

roughness on the dielectric side

 

 

 

 

 

 

 

RMS surfaceݐ Ǥ Ɋ

 

 

 

 

 

 

 

 

 

 

[10],

 

 

 

 

 

 

 

 

 

. Having

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

for electrodeposited copper to result in effective conductivity

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ǥͺ Ɋ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of

 

ǡ

 

 

 

 

 

 

 

x

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and

 

 

 

 

 

Ǥ ͺmm is calculated. ͵Ǥͺ͵ʹ

 

 

ʹʹǤ

 

ɐ

ʹǤ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

Cavity type

 

Model

 

 

 

 

Calculation method

 

 

 

 

 

 

 

 

 

 

 

 

Q

 

Volume

 

Τ

Rectangular

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

value

 

V[mm3]

 

(mode)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mm

 

cavity

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

waveguide

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ǥͻ

 

Ǥ

 

 

Ǥ͵ʹ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(TE101

mode)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[9], Sec. 6.3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ή ή

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Circular

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

waveguide

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cavity

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ͺͺͻ

 

ͻ

 

 

Ǥͻʹ

 

(TE111 mode)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[9], Sec. 6.4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ɏ ή ή

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Circular

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cavity

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

waveguide

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ʹ ͺ

 

ͻ

 

 

Ǥ

 

(TE011 mode)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[10]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ɏ ή ή

 

 

 

 

 

 

 

 

 

 

 

 

 

Rectangular

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

waveguide

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ǥ

 

 

Ǥͺʹ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cavity

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(TM120/TM210

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4170

 

 

 

 

degenerate

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ή

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

modes) [11]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rectangular

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CST Eigenmode solver +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SIW

cavity

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

: Loss and Q calculator

 

 

 

 

 

 

 

ʹǤ

 

͵ Ǥ͵

 

 

Ǥͺ

 

(TE101 mode)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ή

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rectangular

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SIW

dual

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

: CST Eigenmode solver +

 

 

 

 

 

 

 

ʹ Ǥͺ

 

ͺ Ǥ

 

 

Ǥ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mode

cavity

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Loss and Q calculator

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

degenerate

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ή

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(TE102/TE201

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

modes)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rectangular

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1)

 

1)

 

 

1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

waveguide

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CST Eigenmode solver +

 

 

 

 

 

 

 

 

 

ʹ ʹ Ǥ

 

 

 

 

 

E-plane fin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

: Loss and Q calculator

 

 

 

 

 

 

 

4097.6

 

 

 

1.69

 

cavity

with

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ή ή

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2)

 

2)

 

 

2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(dominant

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ʹ Ǥ

 

ͺ ͺǤ͵

 

 

ʹ

.61

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rectangular

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TE101 mode)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

waveguide

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

: CST Eigenmode solver +

 

 

 

 

 

 

 

1) H101

 

1) H101

 

1) H101

cavity

with

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5410.6

 

9058

 

 

0.6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Loss and Q calculator

 

 

 

 

 

 

 

 

 

 

 

E-plane fin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) H102

 

2) H102

 

2) H102

(second

TE101

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ͻǤ

 

ͻ ʹǤͻ

 

 

Ǥ ʹ

 

Table 1: Comparison of unloaded Q factors for various resonant cavities.

 

 

 

 

 

 

 

 

 

 

 

and

TE

102

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ή ή

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

modes)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

First SIW cavity analysed here is the dominant TE101 mode rectangular one. More precisely, the base is of square shape to maximize the Q factor, having no more restriction of adhering to standardized waveguide dimensions or maximizing power handling capability this way due to inherent low-profile limitation that predetermines breakdown characteristics. The SIW cavity design starts with idealisation of all its walls

being ideally flat PEC surfaces, as for a conventional rectangular waveguide resonator. Such a resonator has the

considering more precise

ξξ

Ǥʹͻ

 

base edge length of

 

 

 

 

. Now

model of SIW with metalized vias, firstly, via diameters and distances between sequential via centres were chosen to be as to satisfy the conditions

ɉ Ȁ and ʹ [12]. Therefore, Ǥ and

4

the number of via-holes along one side wall including corner

Finally, a

rectangular

WR-90 waveguide cavity with

an

vias shared with adjacent side walls is 12. Having the

E-plane fin is investigated. The metal insert on which the fin

calculated

length

of

as

the desired

effective

length,

the

is etched is 0.2 mm thick.

 

 

 

 

 

 

 

 

 

 

exact design-oriented length between via centre of opposite

The

fin

length

 

and

width

are

1)

Lfin = 5.8 mm

and

side

 

walls

was

further

 

by

 

optimization

 

found

to

be

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wfin = 1.5 mm; 2) Lfin = 6.8 mm and Wfin = 1 mm respectively

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for the dominant TE101 mode. Although the eigenmode solver

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eigenmode

solver

is

used

for calculation

of

 

the

cavity

finds purely resonant frequencies that turn into transmission

 

 

 

 

Ǥ ʹ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

resonant modes and their field distribution in the lossless

poles when the cavity is coupled, the fin dimension are

case, whereas in post processing Loss and Q calculation is

selected so as the transmission zero of EPS is located at

applied, meaning that the Q factor in CST is also calculated

around 1) fz = 11.5 GHz and 2) fz = 10.25 GHz. The cavity

by the perturbation method.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dimensions itself are

 

 

 

mm,

 

 

 

mm and

For SIW resonator, Q is composed of Q factor due to

1)

 

 

 

 

mm. or 2) ʹʹǤͺ

 

mm..

 

 

 

 

 

 

 

 

 

 

Ǥ

 

 

conductor

losses,

 

 

 

 

 

 

,

and

Q

factor

due

to

 

Ǥ ʹ

 

 

͵Ǥ ͺ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

͵ Ǥ͵,

 

 

 

 

 

 

 

 

.

 

 

 

For higher order modes, second TE101 and TE102, fin

dielectric losses,

 

 

 

 

 

 

 

 

 

 

dimensions are Lfin = 9.5 mm and Wfin = 4.0 mm, so that there

 

 

 

 

 

 

 

 

 

 

Ǥ

 

 

 

 

 

 

 

is good level of coupling between the two poles of the

TE102 and TE201 mode pair is the most common one for SIW

dual-mode cavity and that the frequency of transmission zero

dual mode cavities, dictated by the substrate height being

in the lower stopband is about fz = 8.8 GHz. For the second

much smaller than the other two dimensions [13]. In fact,

TE101

mode,

the WR-90 waveguide

housing

cavity

is

TM120 and TM210 modes already described are the same as

long.

 

mm long and for TE102 mode it is

 

 

mm

TE102/TE201

modes provided a

rotation swapping axes and

 

 

 

 

 

 

 

 

 

 

 

 

Ǥ

 

transforming what is the height of cavity for TE modes

͵ͻǤ

 

 

 

 

 

 

 

 

 

 

 

4

 

Power handling capability

 

 

 

 

 

 

 

(substrate thickness for SIW) to the length of cavity for TM

 

 

 

 

 

 

 

 

mode.

Thus,

the

formula

 

for

unloaded

 

Q

 

factor

of

Electrical breakdown is an undesirable physical phenomenon

TM120/TM210 modes in Table 1 was derived by readily given

regarding

microwave

filter

design

in

which

dielectric

formula

 

for

 

TE102

mode

 

[9],

(6.46)

 

using

the

 

 

 

 

conductivity rapidly increases after high enough (breakdown)

mappings:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

voltage is applied

on it. It leads to

signal distortion and

in

Furthermore, a TM120/TM210

mode waveguide filter structure

more

severe

cases to

permanent

damage

of

microwave

 

 

 

 

 

 

 

 

ǡ

 

ǡ

 

 

 

 

with cascaded cavities can be linked to a multilayer SIW one.

components. Although breakdown mechanisms, different in

Certainly, differences remain in terms of air dielectric, solid

solid,

liquid

and

 

gaseous

materials,

are well-studied,

an

metal

walls

and

source and load

feed

implemented using

 

accurate breakdown occurrence is intrinsically very hard to be

waveguides rather than planar transmission lines.

 

 

 

 

 

 

 

 

 

 

predicted.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Taking this into account, for degenerate TE102/TE201 modes in

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

square

 

base

 

cavity,

it

 

holds

 

 

ξ

 

 

 

 

 

 

 

 

 

 

.

High power consideration is naturally of importance for

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

waveguide filters due to their distinctive high power system

Moving to the model of SIW

with via-holess, via diameters

applications, either terrestrial or space, especially when they

 

 

ξ

ʹʹǤ

 

are

located

after

a

power

amplifier

(PA),

e.g.

in

a

are

 

 

 

 

 

 

 

 

and the number of vias along one side wall

 

 

 

 

 

 

 

 

communication

satellite

output

 

multiplexer

(OMUX).

including corner vias shared with adjoining side walls is 12.

 

Additional reason for waveguide filters to be susceptible to

 

 

 

Ǥ

 

side

is

by

simulation

found

to

be

The

 

final

base

 

ionization breakdown is that they have high Q resonators and

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

are typically narrowband (for wideband filters, Q factor is less

For SIW dual-mode resonator,

Q

factor due

to

 

conductor

critical, so more compact technologies are usually preferred),

 

 

 

 

ʹ͵Ǥʹ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

meaning large voltage magnification [14]. Also, microwave

losses is

 

 

 

 

 

 

, and Q factor due to dielectric losses

is

 

 

 

 

 

 

 

 

 

It can be observed that

 

 

 

is exactly the

filters, especially

 

waveguide

ones,

are

required to

work

 

 

 

 

 

 

͵Ǥʹ.

 

 

 

 

 

 

 

depends on dielectric

reliably, often in

 

very

harsh

condition,

so

it is

crucial

to

same as in the case of TE

 

 

as it only

investigate

their

limitations

and possible improvements

to

 

 

Ǥ

 

 

 

101

 

 

 

 

 

 

 

 

 

 

 

loss tangent (more precisely, it is its inverse) and not on the

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cavity dimensions [9].

overcome them. In tables 20.1 and 20.2 [15] typical power

levels of high power transmitters are presented. Sharp edges

 

 

of conductive surfaces and decrease in distance between

 

them, which are both present while using fins in waveguides,

5

are well-known causes of local increase of electric field

maximum near corners of the bottom tip of the fin. Also, it is

strength and subsequent sooner reach of breakdown field.

about an order of magnitude higher for the transmission pole

For air and

other gases,

unless the

pressure is

very low,

that for the transmission zero. (In CST MICROWAVE

STUDIO [20], standard E-field view gives peak electric field

breakdown occurs partially as corona discharge or as full

value, here obtained 2.68 x 105 V/m or 2.68 KV/cm for

corona breakdown arcing. The breakdown ignition happens as

normalized peak port power of 1 W.)

avalanche-like increase of free electron density through

 

collision ionization of neutral gas molecules by free electrons

These have been described under ‘normal’ conditions: room

with high kinetic energy built up from microwave field,

temperature of 298 K, sea level pressure of 760 Torr, 10-60 %

transforming

isolating

gas into

conducting

plasma.

humidity and perfect matching. Derating factors are imperfect

Pre-quantum model based on classical kinetic theory of gases,

impedance matching, altitude, moisture, temperature, dirt.

describing particles and their collisions like billiard balls, is

Their influence is graphically presented in [15]. Decrease due

used. Process is described in terms of the nature of the gas,

to mismatch is directly proportional to SWR value. From the

collision frequency (mean free path), diffusion and

1 Atm pressure at the sea level, on higher altitudes the power

attachment. In a region without sources of free electrons,

handling capability drops with the fall of pressure until it

electron density equation reads:

 

 

reaches the bottom of Pashen’s curve, where the gas collision

 

 

 

 

frequency is equal to the RF frequency (e.g. about 10 Torr at

 

 

 

and eventually multipaction takes over as the dominant

 

 

 

,

 

 

10 GHz for air). Afterwards, the breakdown field starts to rise

where n stands for electron density, D for diffusion breakdown mechanism. coefficient, Ȟi for ionization frequency and Ȟa for attachment

frequency, paired with the boundary condition n = 0 on the

5

Conclusion

 

 

 

 

 

 

conducting walls [16].

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The dependence of ionization frequency on the electric field

The structure exhibits unloaded Q factor of 4097.6 with

typical dimensions and can reach exceptionally high Q factor

amplitude is much stronger than those of attachment

to volume ratio of 2.61 mm-3 for the dominant resonant mode

frequency and diffusion coefficient, which are primarily

if optimized that way. Approximate formulas for EPS

dependent on pressure. Conditional to problem geometry, this

dimensions are given depending on frequencies of

differential equation is solved in various exact or approximate

transmission poles and zeros. Furthermore, power handling

ways. It is assumed that electric field distribution had been

capabilities,

which are

of

paramount

importance

for many

waveguide

filter

applications, have

been investigated

for

determined

prior to

solving

the

continuity equation

for

standard terrestrial conditions.

 

 

 

electron density. The breakdown threshold is reached when

 

 

 

 

 

 

 

 

 

 

 

 

sum of electron losses in diffusion and attachment are

 

 

 

 

 

 

 

 

 

balanced by ionization, i.e.

 

 

 

. More complex models

References

 

 

 

 

 

 

can include

electron

 

energy

equation describing electron

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[1]

Y. Konishi and K. Uenakada, “The Design of a

temperature

evolution,

density equation of surface metal

atoms, heat diffusion of the gas medium equation [17], etc.

 

Bandpass Filter with Inductive Strip - Planar Circuit Mounted

 

in Waveguide,” IEEE Trans. Microw. Theory Tech., vol. 22,

 

 

 

 

 

 

 

 

 

 

 

As a

result,

breakdown field

(voltage) versus

pressure

for

no. 10, pp. 869–873, Oct. 1974.

 

Filters,”

different gases and on different frequencies are described by

[2]

S.

B. Cohn,

“Direct-Coupled-Resonator

Proc. IRE, vol. 45, no. 2, pp. 187–196, Feb. 1957.

 

 

Paschen's curves, Figure 20.3-5 [15]. Pashen’s law was first

 

 

[3]

Djuradj

Budimir,

Generalized filter design

by

empirically obtained and published in 1889 [18].

 

 

 

 

computer optimization, Boston, Mass; London: Artech

 

 

 

 

 

 

 

 

 

 

 

A study [19] showed that for right angle conductor edges in

House, 1998.

 

 

 

 

 

 

[4]

G. Goussetis and D. Budimir, “Novel periodically

air on 10 GHz under

normal

conditions, the critical field

loaded E-plane filters,” IEEE Microwave

Wireless

determining breakdown strength is localized very near the

Components Lett., vol. 13,no. 6, pp. 193–195, Jun. 2003.

 

corner

tip

having

electric

field

 

singularity

around

it

[5]

S. Niranchanan, A. Shelkovnikov, and D. Budimir,

(“edge-localized breakdown”).

 

 

 

 

 

“Novel millimetre wave metawaveguide resonators and

Since the field strength for

air is 22.8 KV/cm RMS

or

filters,” 2007 European Microwave Conference, 2007, pp.

913–916.

 

 

 

 

 

 

 

32 KV/cm peak, the proposed EPS can withstand 142.6 W

[6]

O. Glubokov and D. Budimir, “Extraction of

peak power at the resonant frequency of 10 GHz for the

Generalized Coupling Coefficients for Inline Extracted Pole

dimensions

Lfin= 5.8 mm and

L=7.3 mm. The field has

its

 

 

 

 

 

 

 

 

 

6

Filters With Nonresonating Nodes,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3023–3029, Dec. 2011.

[7]N. Mohottige, O. Glubokov, and D. Budimir, “Ultra Compact Inline -Plane Waveguide Extracted Pole Bandpass Filters,” IEEE Microw. Wirel. Compon. Lett., vol. 23, no. 8, pp. 409–411, Aug. 2013.

[8]N. Mohottige, U. Jankovic, and D. Budimir, “Ultra compact E-plane waveguide multiplexers,” 2015 European Microwave Conference (EuMC), 2015, pp. 964–966.

[9]David M. Pozar, Microwave engineering, 3rd ed. / International ed. New York ; Chichester: Wiley, 2004.

[10]A. Morini, M. Baldelli, G. Venanzoni, M. Farina, N. Sidiropoulos, P. Angeletti, P. M. Iglesias, and C. Ernst, “Modeling and design of microwave filters employing overmoded empty cylindrical resonators,” 2015 European Microwave Conference (EuMC), 2015, pp. 971–974.

[11]S. Bastioli, C. Tomassoni, and R. Sorrentino, “A New Class of Waveguide Dual-Mode Filters Using TM and Nonresonating Modes,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 3909–3917, Dec. 2010.

[12]F. Xu and K. Wu, “Guided-wave and leakage characteristics of substrate integrated waveguide,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 1, pp. 66–73, Jan. 2005.

[13]D. Deslandes and K. Wu, “Substrate integrated waveguide dual-mode filters for broadband wireless systems,” Proceedings 2003. Radio and Wireless Conference RAWCON ’03, 2003, pp. 385–388.

[14]M. Yu, “Power-handling capability for RF filters,” IEEE Microw. Mag., vol. 8, no. 5, pp. 88–97, Oct. 2007.

[15]Richard J. Cameron, Raafat R Mansour, and Chandra M Kudsia, Microwave Filters for Communication Systems: Fundamentals, Design and Applications. WileyInterscience, 2007.

[16]D. Anderson, U. Jordon, M. Lisak, T. Olsson, and M. Ahlander, “Microwave breakdown in resonators and filters,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 12, pp. 2547–2556, Dec. 1999.

[17]K. Frigui, D. Baillargeat, S. Verdeyme, S. Bila, A. Catherinot, J. Puech, and D. Pacaud, “Microwave Breakdown in Waveguide Filters Theoretical and Experimental Investigations,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 12, pp. 3072–3078, Dec. 2008.

[18]F. Paschen, “Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz (On the potential difference required for spark initiation in air, hydrogen, and carbon dioxide at different pressures),” Annalen der Physik, vol. 273, no. 5, pp. 69–75, 1889.

[19]T. Olsson, U. Jordan, D. S. Dorozhkina, V. Semenov, D. Anderson, M. Lisak, J. Puech, I. Nefedov, and I. Shereshevskii, “Microwave Breakdown in RF Devices Containing Sharp Corners,” 2006. IEEE MTT-S International Microwave Symposium Digest, 2006, pp. 1233–1236.

[20]www.cst.com

7